A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Fisiologia cardíaca Pós-operatória, Fisiopatologia e Farmacologia

Apresentações semelhantes


Apresentação em tema: "Fisiologia cardíaca Pós-operatória, Fisiopatologia e Farmacologia"— Transcrição da apresentação:

1 Fisiologia cardíaca Pós-operatória, Fisiopatologia e Farmacologia
Versão Original: Ken Tegtmeyer, MD Assistant Professor, Pediatrics Division of Pediatric Critical Care Medicine Oregon Health & Science University Versão Portuguesa: Marta João Silva, MD Teresa Cunha Mota, MD Unidade de Cuidados Intensivos Pediátricos Hospital de São João – Porto -Portugal

2 Sistemas alvo no tratamento do pós-operatório cardíaco
Cardiovascular Pulmonar Nutricional Renal

3 Cardiovascular - Básico
TA ∞ RVS x DC FC x VS Pré-carga Contractilidade Pós-carga

4 Pré-carga Quantidade de volume ventricular durante a diástole
Proporcional ao estado volémico Aumentar a pré-carga aumenta o volume sistólico (em geral)

5 Problemas da pré-carga no pós-operatório
Ou não há pré-carga suficiente ou O coração necessita de mais volume do que o habitual

6 Causas de hipovolemia Hemorragia intra-operatória
Hemorragia pós-operatória Coagulopatias Trombocitopenia induzida pela heparina Perdas para 3º espaço

7 Edema: quais as causas? Sobregarga de volume
Diminuição da pressão oncótica “Fuga” vascular

8 Problemas da pré-carga no pós-operatório
Ou não há pré-carga suficiente ou O coração necessita de mais volume do que o habitual

9 Causas da necessidade de aumento da pré-carga
Ventrículo direito rígido Hipertrofia do ventrículo direito Tetralogia de Fallot Canal AV não balanceado Edema do miocárdio “tempo de circulação extracorporal e clampagem prolongados” Edema generalizado (anasarca)

10 Outras causas Arritmias auriculares ou ritmo juncional
Ausência de ‘kick’ auricular Fluxo pulmonar passivo

11 Shunt de Glen Para ventrículos únicos
Liga a VCS à Artéria Pulmonar Direita

12 Cirurgia de Fontan Normalmente após o shunt de Glen para reparação tardia do ventrículo único. Direcciona todo o retorno venoso para os pulmões separando as circulações pulmonar e sistémica.

13 Pré-carga - tratamento
Cristalóides vs Colóides

14 Cristalóides Fluído isotónico Soro fisiológico Lactato de Ringer
154 mEq NaCl/L Lactato de Ringer 130mEq Na+ 4mEq K+ 3mEq Ca2+ 109mEq Cl- 28mEq Lactato

15 Cristalóides Normalmente reservado para a administração nutricional
Sem propriedades oncóticas Diferente do tratamento habitual do choque

16 Colóides Propriedades oncóticas
Maior probabilidade de manutenção no espaço intravascular Maior duração de acção Menor probabilidade de contribuir para o edema Alguns são muito úteis

17 Colóides mais usados Albumina a 5% Albumina a 25% Plasma (PFC)
Concentrado de Glóbulos Rubros (GR) Plaquetas Crioprecipitado Voluven ®

18 Albumina a 5% Origem: Sangue humano
Conteúdo: 5g albumina/100ml plasma livre de proteínas Conteúdo de sódio: mEq/L Dose: 10ml/kg Uso: expansão de volume

19 Albumina 25% Albumina “hipossalina”
Origem: Sangue humano Conteúdo: 25g albumina/100ml plasma livre de proteínas Conteúdo de sódio: mEq/L Dose: 1-2g/kg dose total Uso: reposição de albumina

20 Plasma - PFC Origem: Sangue humano
Conteúdo: plasma, incluindo albumina, factores de coagulação, imunoglobulinas, etc. Conteúdo de sódio: mEq/L Dose: 10ml/kg Tamanho/unidade: mL Uso: expansão de volume, coagulopatia

21 Concentrado de Glóbulos Rubros (GR)
Origem: Sangue humano Conteúdo: GR’s - HCT ~70% o restante é plasma Conteúdo de sódio: mEq/L Dose: 10-15ml/kg, manter presente que se pretende uma rápida subida do hematócrito e que se pode minimizar os riscos transfusionais com a limitação da exposição a diferentes dadores Tamanho/unidade: mL Uso: anemia, hipoxemia, hemorragia

22 Plaquetas Origem: Sangue humano Conteúdo: plaquetas
Conteúdo de sódio: mEq/L Dose: 1unidade/10kg de peso corporal Tamanho/unidade: 20-30mL Uso: trombocitopenia, hemorragia

23 Crioprecipitado Origem: Sangue humano
Conteúdo: Fibrinogénio, factor VIII, factor VW Conteúdo em Sódio: mEq/L Dose: 1unidade/4kg peso corporal Tamanho/unidade: 20-30mL Uso: coagulopatia, CID, hipofibrinogenemia, Doença de Von Willebrand Riscos: exposição a múltiplos dadores, maior imunogenicidade

24 Voluven ®/Hidroxietilamido
Origem: Sintético Conteúdo: amido de elevado peso molecular Conteúdo em sódio: 77mEq/L Dose: 10ml/kg; Máx 20ml/kg/dia Tamanho/unidade: 500mL Uso: expansão de volume Risco: hemodiluição, coagulopatia se dado em excesso

25 Pré-carga Contractilidade Pós-carga
De volta ao diagrama TA ∞ RVS x DC FC x VS Pré-carga Contractilidade Pós-carga

26 Contractilidade Frequentemente comprometida Secundária à cirurgia
Aumento do trabalho cardíaco De alguma forma dependente da pré-carga

27 Lei de Frank-Starling Sobreposição óptima = contracção mais forte
Sobredistensão = diminuição da força de contracção Demasiado curto = diminuição do comprimento da contracção

28 Como podemos alterar a contractilidade?
Receptores Adrenérgicos

29 Receptores Alfa Vasculatura periférica
A estimulação causa vasoconstrição Aumento da RVS e da pós-carga (a ser discutido posteriormente)

30 Receptores Beta-1 1 - Coração
A estimulação leva a cascata de actividade Activa a adenilciclase Aumenta a produção de AMP cíclico Aumenta a entrada de Ca2+ na célula Aumenta a força de contracção (inotropismo) e a frequência de contracção (cronotropismo)

31 Receptores Beta-2 2 - Pulmões
Localizado nos pulmões e vasculatura periférica A estimulação causa relaxamento do músculo liso Broncodilatação pulmonar Vasodilatação periférica

32 Agonistas Adrenérgicos
Dopamina Dobutamina Epinefrina Fenilefrina Milrinona

33 Dopamina Agonista alfa, beta e dopaminérgico Dose: 2-20mcg/kg/min
Efeitos: Baixa dose 2-5mcg/kg/min Dose ‘renal’ Dose média: sobretudo beta Dose alta: alfa começa a predominar Uso: inotrópico, vasoconstrição, efeitos ‘renais’ Riscos: isquemia, vasoconstrição

34 Dobutamina Agonista b1 selectivo Dose: 3-20mcg/kg/min
Efeitos: aumenta inotropismo e cronotropismo Uso: aumento da contractilidade, força de contracção Risco: vasodilatação em doses elevadas, taquicardia

35 Epinefrina Nome comum Adrenalina Ad/Renal/in = Acima do rim
Epi/Nephr/in = Acima do rim Actua em todos os receptores b>a Dose: 0,01mcg/kg/min - 2mcg/kg/min Uso: efeito inotrópico mais potente Risco: vasoconstrição, isquemia, acidose, taquicardia

36 Milrinona Inibidor da fosfodiesterase Inibe metabolismo do AMPc

37 Lembra-se desta via?

38 Cálcio Efeitos benéficos Mensageiro comum final
CaCl2 vs Gluconato de Ca Debate UCIN vs UCIP? Independentemente da escolha, T1/2 de uma dose é de 30min

39 Cloreto de cálcio Mais facilmente ionizável Mais concentrado
Dissocia-se em Ca+2 e 2Cl- Mais concentrado Solução a 27% (27mg Ca+2 elementar/mL) Mais caústico se dado perifericamente Dose: 10-20mg/kg/dose

40 Gluconato de cálcio Dissociação mais lenta
O gluconato necessita de metabolização hepática Menos concentrado Solução a 9% Menos caústico se fornecido perifericamente Dose: mg/kg/dose

41 Cálcio – qual usar? Aprenda um
Familiarize-se com os riscos e benefícios Apenas use esse

42 E que tal mais um Catião ? Magnésio Vasodilatador
Catião bivalente Também importante no ritmo e na condução eléctrica Co-transporte com o Cálcio, logo a hipomagnesemia pode induzir hipocalcemia (ou impedir a sua correcção) Vasodilatador Pode causar hipotensão – administrar lentamente Dose: 20-50mg/kg MgSO4

43 Pré-carga Contractilidade Pós-carga
De volta ao diagrama TA ∞ RVS x DC FC x VS Pré-carga Contractilidade Pós-carga

44 Pós-carga Refere-se ao trabalho exercido contra a contracção cardíaca
Seja uma obstrução imediata como estenose valvular ou hipertrofia Ou relacionado com a resistência vascular sistémica A diminuição da pós-carga facilita a contracção cardíaca

45 Diminuição da pós-carga
Usamos três drogas: Nitroprussiato Nitroglicerina Óxido Nítrico

46 Óxido Nítrico (NO) Anteriormente conhecido como Factor Relaxador Derivado do Endotélio (FRDE) Provoca relaxamento do músculo liso das arteríolas Selectivo para o pulmão quando administrado por via inalatória Liga-se rapidamente à hemoglobina e é inactivado

47 NO (continuação) Aprovado para o tratamento da Hipertensão Pulmonar Persistente do Recém-nascido (HTPPN) pela FDA Tem sido usado para tratar a hipertensão pulmonar do pós-operatório das cardiopatias congénitas O suporte literário para o seu uso fora da HTPPN é raro e/ou fraco Tratamento muito caro- $3000/dia

48 Nitroprussiato Mecanismo de acção: dador de NO
Local de acção: primariamente nas artérias Acção: vasodilator Dose: 0,3-7,0 mcg/kg/min Riscos: hipotensão grave, toxicidade por cianeto, metahemoglobinemia

49 Nitroglicerina Mecanismo de acção: dador de NO
Local de acção: veias e artérias, também artérias coronárias Acção: vaso e venodilator Dose: 0,3-5,0mcg/kg/min Uso: pós-operatório de Transposição, ou outra cirurgia envolvendo as artérias coronárias Riscos: pode diminuir a pré-carga, hipotensão grave, metahemoglobinemia, toxicidade por cianeto

50 Quem necessita de diminuir a pós-carga?
Diminuição da força contra a qual o coração contrai Particularmente necessário em doentes com insuficiência aórtica ou regurgitação mitral Pode ajudar a reduzir a quantidade de regurgitação Má função do ventrículo esquerdo

51 Pós-carga – Algo mais? Duas drogas “novas”: Fenoldopam Milrinona

52 Fenoldopam Nome vulgar Corlopam
Modificação da Dopamina com um grupo fenol Início do nome ´Fenol-Dopam´- ina Agonista do receptor 1 da dopamina Vasodilatação – usado no tratamento da hipertensão do adulto Melhoria do fluxo sanguíneo renal

53 Milrinona Inibidor da fosfodiesterase Efeito inotrópico e cronotrópico
Potencia a vasodilatação dependente do AMPc Não relacionado com os receptores adrenérgicos Dose: 0,3- 1mcg/kg/min Uso: doentes que necessitem de inotrópico e redução da pós-carga

54 Pré-carga Contractilidade Pós-carga
De volta ao diagrama TA ∞ RVS x DC FC x VS Pré-carga Contractilidade Pós-carga

55 Frequência cardíaca Raramente se manipula a frequência cardíaca
Uma excepção particular (além das arritmias) Pós-transplante Coração desnervado - sem input nervoso Sem qualquer intervenção, a FC seria de 70-80 Administrar Isoproteronol para obter FC de 120

56 TA = RVS x DC De volta ao diagrama
Antes de avançar para a RVS vamos falar do Débito Cardíaco Como se monitoriza o DC?

57 Monitorização do débito cardíaco
No adulto um cateter de Swan-Ganz é usado para medir “directamente” o débito cardíaco No entanto, nestes doentes a tradicional termodiluição e outras técnicas estão limitadas porque as frequentes lesões mistas levam a valores artificialmente elevados de DC Usam-se técnicas alternativas de monitorização do débito cardíaco Saturação venosa mista de oxigénio, e Lactato

58 Débito cardíaco – Equação de Fick
VO2 = (CaO2 - CvO2)Q VO2 é o consumo de oxigénio CaO2 é o conteúdo arterial de oxigénio 1,34mlO2/gHb/dl x [Hb] x Sat O2 + 0,003 PaO2 CvO2 é o conteúdo venoso de oxigénio Q é o débito cardíaco

59 Resolvendo a equação... VO2 = (CaO2-CvO2)Q equivale a
VO2 = (Saturação Arterial – Saturação Venosa Mista) 1.34 Hb Q Se assumirmos que o Consumo de Oxigénio (VO2), Hb e saturação arterial são constantes (não são, mas simplificam as contas) Sendo esta uma equação, quando o Débito Cardíaco sobe, a diferença de saturações deve diminuir, levando a uma saturação venosa mista (SVM) elevada Quando o débito cardíaco desce, a diferença de saturações deve subir, e a SVM deve portanto descer Assim a SVM segue a tendência do débito cardíaco Ver isto graficamente no próximo diapositivo:

60 Saturação venosa mista
SVM =75% Fornecimento de oxigénio SVM =50% If the blue boxes represent the oxygen consumption and the entire bar represents DO2 or oxygen delivery, the bricked bars represent the amount of oxygen returning to the heart, measures as the percent saturation. With a higher cardiac output, a larger percentage of the oxygen that leaves the heart returns to the heart unconsumed. With poor cardiac output, a smaller percentage returns uncomsumed. DC baixo DC bom

61 Lactato O lactato é produzido na presença de metabolismo anaeróbio
Isto ocorre quando a perfusão é insuficiente para compensar a exigência metabólica tecidular Com a melhoria do débito cardíaco, o metabolismo anaeróbio deve diminuir e os níveis de lactato devem baixar para valores normais

62 Limitações na monitorização do DC
Tanto a SVM como os valores de lactato podem ser enganadores Sepsis e estados febris podem levar ao aumento da produção de lactato e, quer ao aumento do consumo de oxigénio quer ao aumento do shunt, com consequente diminuição da extracção de O2 Existem outros factores que também podem alterar estes valores Geralmente, estes podem ser usados para traçar tendências mais do que fornecer valores absolutos

63 TA = DC x RVS De volta ao diagrama
Finalmente vamos falar da RVS – resistência vascular sistémica Relaxem, este vai ser rápido

64 Resistência Vascular Sistémica
Lembrar que a RVS contribui para a pós-carga Em geral, o aumento da RVS leva ao aumento da pós-carga e diminuição do DC Uma vez que estes doentes necessitam de melhorar o DC normalmente evita-se aumentar a pós-carga, mas para estarmos completamente seguros...

65 Drogas que aumentam a RVS
Agonistas Alfa, essencialmente Epinefrina Já falada anteriormente Norepinefrina Fenilefrina

66 Norepinefrina Levophed® (not ‘Leave ‘em Dead’)
Semelhante à epinefrina mas com efeito alfa superior ao beta Usado mais frequentemente em adultos em choque Dose inicial 0,05mcg/kg/min Vigiar a vasoconstrição grave, isquemia

67 Fenilefrina Neo-sinefrina Agonista alfa puro
Útil em certas situações específicas (rinorreia) Cardiomiopatia hipertrófica Spell anóxico Raramente usado no pós-operatório

68 Outros tópicos Suporte pulmonar Suporte renal

69 Suporte pulmonar Dois principais objectivos: Oxigenação Ventilação

70 Ventilação Objectivos gerais: normoventilação e o menor tempo possível no ventilador Fluxo sanguíneo pulmonar passivo Shunt de Glen Cirurgia de Fontan Com o fluxo sanguíneo pulmonar passivo, possivelmente com mais efeito da pressão das vias aéreas, queremos minimizar Pmáx mais baixa, Tempo Inspiratório mais curto, PEEP mínimo

71 Hipertensão Pulmonar Observada em vários doentes
Mais frequentemente naqueles com lesões associadas a grande shunt esquerdo-direito (fluxo sanguíneo pulmonar aumentado) Habitual com níveis de fluxo sanguíneo aumentados Leito pulmonar ‘reactivo’ Canal Auriculoventricular Tetralogia de Fallot

72 Tratamento da HT pulmonar
Clássico: Hiperventilação pH 7,50-7,55 Semelhante ao tratamento da HTPP neonatal Oxigénio Potente vasodilatador pulmonar, manter elevados níveis de oxigenação

73 Tratamento da HT pulmonar
Mais recente Óxido Nítrico Vasodilator pulmonar Inalado Estudos em curso Factor limitante – necessita de intubação traqueal Medicamentos futuros Prostaciclina (pgI2), dipiridamol, outros

74 Suporte Pulmonar - Oxigenação
Shunt Esquerdo-Direito, ou Direito-Esquerdo

75 Shunt Direito-Esquerdo
Intracardíaco CIV - com HVD Atrésia pulmonar 5 T’s (Tetralogia de Fallot, Atrésia Triscúspide, Truncus Arteriosus, RVPAT, TGV) Após procedimentos cirúrgicos de reparação das patologias acima e Síndrome do Coração Esquerdo Hipoplásico (SCEH) Extracardíaco Intrapulmonar - MAV, atelectasia

76 Shunt Esquerdo-Direito
Equação QP:QS Fluxo sanguíneo Pulmonar: Fluxo sanguíneo Sistémico Sat (aorta) - Sat (VCS) Sat(AE) - Sat(AP) O normal é 1 (balanceada) Frequentemente observado 2:1 ou 3:1, quanto maior o fluxo pulmonar sanguíneo – menor o débito cardíaco sistémico

77 Hemoglobina e Oxigenação
Lembram-se disto? CaO2 = 1,34 [Hb] O2 sat + 0,003 PaO2 Ignorar oxigénio dissolvido e resolvendo a Hb [Hb] = CaO2/(1,34 O2sat) Objectivo habitual CaO2 = (vamos escolher 16) [Hb] = 12/O2sat Mais tanques de oxigénio!

78 Suporte Renal Diurese é bom NTA é comum 3 classes Hipocaliémia Ansa
Tiazida Osmótica Hipocaliémia

79 Diuréticos da ansa Mais frequentes Lasix® Bumex®
Outros: Torsemide ®, Demedex ®, etc Potentes, risco de ototoxicidade, hipocaliémia, hipercalciúria (cálculos renais)

80 Diuréticos tiazídicos
Metolazona (Zaroxylyn ®) Aumenta a excreção renal em doentes com baixa TFG Pode aumentar o débito urinário perante elevadas doses de diuréticos de ansa Circulação entero-hepática, actua após suspensão (24-72 horas)

81 Diuréticos Osmóticos Manitol Usar raramente
São rapidamente excretados, arrastando a água consigo Pode causar ´lavagem´renal Pode ser útil perante um baixo débito urinário A glicose actua de forma semelhante

82 Hipocaliémia Maior risco de hipocaliémia?
Hipercaliémia! Devido a correcção agressiva Importante se o doente estiver medicado com Digoxina, pois a hipocaliémia potencia a sua toxicidade Sem comorbilidade, pode tolerar K = 2 Doentes com disritmias necessitam de níveis perto de 4, para manter ritmo sinusal Não esquecer de monitorizar o débito urinário nos que necessitam de reposição de K

83 Nutrição Muitas questões A infusão de Dextrose/Glicose é importante
O Fósforo é necessário para a formação de ATP e manutenção do ritmo Outros electrólitos Alimentação entérica vs parentérica Colocação Tubos nasojejunais guiados por pH

84 Referências Texto Internet
Rogers: Textbook of Pediatric Intensive Care Critical Cardiac Disease of Infants and Children Internet Picubook.net Pedi-heart web-site


Carregar ppt "Fisiologia cardíaca Pós-operatória, Fisiopatologia e Farmacologia"

Apresentações semelhantes


Anúncios Google