A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Genética de Populações

Apresentações semelhantes


Apresentação em tema: "Genética de Populações"— Transcrição da apresentação:

1 Genética de Populações
Mestrando:Jiulliano de Sousa Costa Prof. Dr. Eric Santos Araújo MCAS

2 Genética de populações
Estrutura genética de uma população

3 Genética de populações
Estrutura genética de uma população Grupo de indivíduos de uma mesma espécie que podem entrecruzar.

4 Genética de populações
Estrutura genética de uma população Grupo de indivíduos de uma mesma espécie que podem entrecruzar. Alelos Genótipos Padrão das variações genéticas nas populações Mudanças na estrutura gênica através do tempo

5 Estrutura genética Freqüências genotípicas Freqüências alélicas
rr = branca Rr = rosa RR = vermelha

6 Estrutura genética Freqüências genotípicas Freqüências alélicas
200 = branca 500 = rosa 300 = vermelha 200/1000 = 0.2 rr 500/1000 = 0.5 Rr 300/1000 = 0.3 RR Total = 1000 flores

7 Estrutura genética Freqüências genotípicas Freqüências alélicas
200 rr = 400 r 500 Rr = 500 R 500 r 300 RR = 600 R 900/2000 = 0.45 r 1100/2000 = 0.55 R Total = 2000 alelos

8 Para uma população com genótipos:
Calcular: Freqüência genotípica: 100 GG 160 Gg 140 gg Freqüência fenotípica Freqüência alélica

9 Para uma população com genótipos:
Calcular: Freqüência genotípica: 100 GG 160 Gg 140 gg 100/400 = 0.25 GG 160/400 = 0.40 Gg 140/400 = 0.35 gg 260 0.65 Freqüência fenotípica 260/400 = 0.65 verde 140/400 = 0.35 amarelo Freqüência alélica 360/800 = 0.45 G 440/800 = 0.55 g

10 A genética de populações estuda a origem da variação, a transmissão das variantes dos genitores para a prole na geração seguinte, e as mudanças temporais que ocorrem em uma população devido a forças evolutivas sistemáticas e aleatórias. RESPONDA: Porque alelos da hemofilia são raros em todas as populações humanas enquanto o alelo que causa anemia falciforme é tão comum em algumas populações africanas? Que mudanças esperar na freqüência de anemia falciforme em uma população que recebe migrantes africanos? Que mudanças ocorrem em populações de insetos sujeitas à inseticida geração após geração?

11

12 ERITROPOIESE ERITROBLASTO I ERITROBLASTO II HEMOCITOBLASTO
PROERITROBLASTO NORMOBLASTO RETICULÓCITO ERITRÓCITO

13 O que é Genética de populações?
Porquê a variação genética é importante? Como a estrutura genética muda? O que é Genética de populações? Freqüência genotípica Freqüência alélica

14 Variação genética no espaço e tempo
Freqüência dos alelos Mdh-1 em colônias de caramujos

15 Variação genética no espaço e tempo
Mudanças na freqüência do alelo F no locus Lap em populações de ratos da pradaria em 20 gerações

16 Variação genética no espaço e tempo
Porquê a variação genética é importante? Potencial para mudanças na estrutura genética Adaptação à mudanças ambientais Conservação ambiental Divergências entre populações Biodiversidade

17 Porquê a variação genética é importante?
Sobrevivência Aquecimento global variação EXTINÇÃO!! não variação

18 Porquê a variação genética é importante?
norte sul variação não variação

19 Porquê a variação genética é importante?
norte sul divergência variação NÃO DIVERGÊNCIA!! não variação

20 Como a estrutura genética muda?
Mudanças nas freqüências alélicas e/ou freqüências genotípicas através do tempo mutação migração seleção natural deriva genética Casamento preferncial

21 Como a estrutura genética muda?
mutação migração seleção natural deriva genética Casamento preferencial Mudanças no DNA Cria novos alelos Fonte final de toda variação genética

22 Como a estrutura genética muda?
mutação migração seleção natural deriva genética Casamento preferencial Movimento de indivíduos entre populações Introduz novos alelos “Fluxo gênico”

23 Como a estrutura genética muda?
mutação migração seleção natural deriva genética Casamento preferencial Certos genótipos deixam mais descendentes Diferenças na sobrevivência ou reprodução diferenças no “fitness” Leva à adaptação

24 Seleção Natural Resistência à sabão bactericida
1ª geração: 1,00 não resistente 0,00 resistente

25 Seleção Natural Resistência à sabão bactericida
1ª geração: 1,00 não resistente 0,00 resistente

26 Seleção Natural Resistência à sabão bactericida mutação!
1ª geração: 1,00 não resistente 0,00 resistente 2ª geração: 0,96 não resistente 0,04 resistente mutação!

27 Seleção Natural Resistência à sabão bactericida
1ª geração: 1,00 não resistente 0,00 resistente 2ª geração: 0,96 não resistente 0,04 resistente 3ª geração: 0,76 não resistente 0,24 resistente

28 Seleção Natural Resistência à sabão bactericida
1ª geração: 1,00 não resistente 0,00 resistente 2ª geração: 0,96 não resistente 0,04 resistente 3ª geração: 0,76 não resistente 0,24 resistente 4ª geração: 0,12 não resistente 0,88 resistente

29 Seleção Natural pode causar divergência em populações
norte sul divergência

30 Seleção sobre os alelos da anemia falciforme
aa – ß hemoglobina anormal Anemia falciforme Baixo fitness AA – ß hemoglobina normal Vulnerável à malária Médio fitness Aa – Ambas ß hemoglobinas resistente à malária Alto fitness A seleção favorece os heterozigotos (Aa) Ambos alelos são mantidos na população (a em baixa freqüência)

31 Como a estrutura genética muda?
mutação migração seleção natural deriva genética Casamento preferencial Mudança genética simplesmente ao acaso Erros de amostragem Sub-representação Populações pequenas

32 Deriva Genética Antes: 8 RR 8 rr 0.50 R 0.50 r Depois: 2 RR 6 rr

33 Causa mudanças nas freqüências alélicas
Como a estrutura genética muda? mutação migração seleção natural deriva genética Casamento preferencial Causa mudanças nas freqüências alélicas

34 Como a estrutura genética muda?
mutação migração seleção natural deriva genética Casamento preferencial Casamento combina os alelos dentro do genótipo Casamento não aleatório Combinações alélicas não aleatórias

35 Variação fenotípica Contínua Descontínua

36 Freqüências alélicas Tipo sanguíneo Genótipo Número de pessoas M LMLM 1787 MN LMLN 3039 N LNLN 1303 Cálculo da freqüência: incidência de cada alelo dentre todos os observados Número total de alelos na amostra: 2 x 6129 = 12258 Freqüência do alelo LM: [(2 x 1787) ] / = 0,5395 Freqüência do alelo LN: [(2 x 1303) ] / = 0,4605 Se “p” representa a freqüência do alelo LM e “q” a do alelo LN, a população avaliada apresenta: p = 0, q = 0,4605 Como LM e LN são os únicos alelos desse gene: p + q = 1

37 Freqüências genotípicas: teorema de Hardy-Weinberg
Em uma população infinitamente grande e panmítica, e sobre a qual não há atuação de fatores evolutivos, as freqüências gênicas e genotípicas permanecem constantes ao longo das gerações. Qual valor preditivo das freqüências alélicas? ovócitos A (p) a (q) AA p2 Aa pq aa q2 Genótipo Freqüência AA p2 Aa 2pq aa q2 espermatozóides

38 Hardy Weinberg Equation
A freqüência do alelo “A”: em uma população é chamada “p” Em uma população de gametas, a probabilidade que ambos, ovos e espermatozóides, contenham o alelo “A” é p x p = p2 A freqüência do alelo “a”: em uma população é chamada “q” Em uma população de gametas, a probabilidade que ambos, ovos e espermatozóides, contenham o alelo “a” é q x q = q2 Em uma população de gametas, a probabilidade que ambos, ovos e espermatozóides, contenham alelos diferentes é: (p x q) + (q x p) = 2 pq. Fêmeas dão “a” e machos “A” ou Fêmeas dão “A” e machos “a”

39 Hardy Weinberg Equation
p2 + 2pq + q2 = 1

40 Aplicações do princípio de Hardy-Weinberg
Tipo sanguíneo Genótipo Número de pessoas M LMLM 1787 MN LMLN 3039 N LNLN 1303 TOTAL = 6129 A população observada está em equilíbrio de Hardy-Weiberg? p = 0, q = 0,4605 Genótipo Freqüência de Hardy-Weinberg LMLM p2 = (0,5395)2 = 0,2911 LMLN 2pq = 2 (0,5395) (0,4605) = 0,4968 LNLN q2 = (0,4605)2 = 0,2121


Carregar ppt "Genética de Populações"

Apresentações semelhantes


Anúncios Google