A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

TÓPICOS DE MATEMÁTICA PROFESSOR: LUÍS GUSTAVO. ANÁLISE COMBINATÓRIA: Parte da matemática que trabalha com problemas de contagem. Seu universo de cálculo.

Apresentações semelhantes


Apresentação em tema: "TÓPICOS DE MATEMÁTICA PROFESSOR: LUÍS GUSTAVO. ANÁLISE COMBINATÓRIA: Parte da matemática que trabalha com problemas de contagem. Seu universo de cálculo."— Transcrição da apresentação:

1 TÓPICOS DE MATEMÁTICA PROFESSOR: LUÍS GUSTAVO

2 ANÁLISE COMBINATÓRIA: Parte da matemática que trabalha com problemas de contagem. Seu universo de cálculo são os números naturais. Parte da matemática que trabalha com problemas de contagem. Seu universo de cálculo são os números naturais.

3 Guia São Paulo O guia SP mostra em seu site as melhores opções para lazer em São Paulo. Sabendo que no dia 26/07/2010 o site indicou 10 filmes, 8 opções em gastronomia, 12 bares e 6 teatros, dessa forma, de quantos modos distintos uma pessoa pode realizar um programa? Exercício: 1

4 Princípios de contagem Os princípios de contagem são métodos para a resolução de problemas. Princípio aditivo Quando um evento esta dividido em etapas alternativas, ou seja, ocorre uma ou ocorre a outra, ou outra, e assim por diante. O número de possibilidades do evento é dado pela soma do número de possibilidades de cada etapa. Então: Evento Etapa 1 ou Etapa 2 ou Etapa 3 ou... n(Evento) = n(Etapa 1) + n(Etapa 2) + n(Etapa 3)

5 Guia São Paulo O guia SP mostra em seu site as melhores opções para lazer em São Paulo. Sabendo que no dia 26/07/2010 o site indicou 10 filmes, 8 opções em gastronomia, 12 bares e 6 teatros, dessa forma, de quantos modos distintos uma pessoa pode realizar um programa? n(E) = n(filme) + n(gastronomia) + n(bares) + n(teatros) n(E) = n(filme) + n(gastronomia) + n(bares) + n(teatros) n(E) = = 36 possibilidades. n(E) = = 36 possibilidades. Resolução:

6 Um hospital está reorganizando a sua farmácia, e para facilitar a visualização e agilizar a localização de medicamentos, selecionou 8 cores para identificar 6 grupos de medicamentos essenciais, sendo que cada grupo de medicamentos deverá estar associado a uma cor distinta. Sabe-se que já foi designada a cor amarela para o grupo de antibióticos. Dessa maneira, o número de diferentes composições de cores que poderão ser formadas é igual a: Um hospital está reorganizando a sua farmácia, e para facilitar a visualização e agilizar a localização de medicamentos, selecionou 8 cores para identificar 6 grupos de medicamentos essenciais, sendo que cada grupo de medicamentos deverá estar associado a uma cor distinta. Sabe-se que já foi designada a cor amarela para o grupo de antibióticos. Dessa maneira, o número de diferentes composições de cores que poderão ser formadas é igual a: (A) (B) (C) (D) (E) 720. Exercício: 2

7 Princípio multiplicativo Quando um evento esta dividido em etapas sucessivas, ou seja, ocorre uma e ocorre a outra, e outra, e assim por diante. O número de possibilidades do evento é dado pelo produto do número de possibilidades de cada etapa. Então: Evento Etapa 1 e Etapa 2 e Etapa 3 e... n(Evento) = n(Etapa 1). n(Etapa 2). n(Etapa 3)

8 Um hospital está reorganizando a sua farmácia, e para facilitar a visualização e agilizar a localização de medicamentos, selecionou 8 cores para identificar 6 grupos de medicamentos essenciais, sendo que cada grupo de medicamentos deverá estar associado a uma cor distinta. Sabe-se que já foi designada a cor amarela para o grupo de antibióticos. Dessa maneira, o número de diferentes composições de cores que poderão ser formadas é igual a: Um hospital está reorganizando a sua farmácia, e para facilitar a visualização e agilizar a localização de medicamentos, selecionou 8 cores para identificar 6 grupos de medicamentos essenciais, sendo que cada grupo de medicamentos deverá estar associado a uma cor distinta. Sabe-se que já foi designada a cor amarela para o grupo de antibióticos. Dessa maneira, o número de diferentes composições de cores que poderão ser formadas é igual a: (A) (B) (C) (D) (E) 720. RESOLUÇÃO: 8 cores para identificar 6 grupos de medicamentos. 8 cores para identificar 6 grupos de medicamentos. Definida a cor amarela para o grupo de antibióticos, restam 7 cores para os demais grupos. Então: Definida a cor amarela para o grupo de antibióticos, restam 7 cores para os demais grupos. Então: ALTERNATIVA: C

9 O sistema de leitura para deficientes visuais, conhecido como Braile, criado em 1825, surgiu a partir de um sistema de leitura no escuro desenvolvido para uso militar. Quando o francês Louis Braille, que era deficiente visual, conheceu o sistema, passou a utilizá-lo e logo depois o modificou, passando de um grupo de 12 pontos para um grupo de apenas 6 pontos, formado por duas colunas com três pontos cada. O agrupamento desses seis pontos, O sistema de leitura para deficientes visuais, conhecido como Braile, criado em 1825, surgiu a partir de um sistema de leitura no escuro desenvolvido para uso militar. Quando o francês Louis Braille, que era deficiente visual, conheceu o sistema, passou a utilizá-lo e logo depois o modificou, passando de um grupo de 12 pontos para um grupo de apenas 6 pontos, formado por duas colunas com três pontos cada. O agrupamento desses seis pontos, dos quais pelo menos um se destaca em relação aos outros, formam os caracteres nesse sistema de leitura. A partir dessas informações, podemos concluir que o número máximo de caracteres distintos que podem ser representados neste sistema de escrita corresponde a: a)63. b) 89. c) 26. d) 720. e) 36. Exercício: 3

10 Raciocínio Exclusivo Esse método consiste em contar todas as possibilidades de um evento ocorrer e excluir (subtrair) as possibilidades que não nos interessam. Esse método consiste em contar todas as possibilidades de um evento ocorrer e excluir (subtrair) as possibilidades que não nos interessam.

11 O sistema de leitura para deficientes visuais, conhecido como Braile, criado em 1825, surgiu a partir de um sistema de leitura no escuro desenvolvido para uso militar. Quando o francês Louis Braille, que era deficiente visual, conheceu o sistema, passou a utilizá-lo e logo depois o modificou, passando de um grupo de 12 pontos para um grupo de apenas 6 pontos, formado por duas colunas com três pontos cada. O agrupamento desses seis pontos, O sistema de leitura para deficientes visuais, conhecido como Braile, criado em 1825, surgiu a partir de um sistema de leitura no escuro desenvolvido para uso militar. Quando o francês Louis Braille, que era deficiente visual, conheceu o sistema, passou a utilizá-lo e logo depois o modificou, passando de um grupo de 12 pontos para um grupo de apenas 6 pontos, formado por duas colunas com três pontos cada. O agrupamento desses seis pontos, dos quais pelo menos um se destaca em relação aos outros, formam os caracteres nesse sistema de leitura. A partir dessas informações, podemos concluir que o número máximo de caracteres distintos que podem ser representados neste sistema de escrita corresponde a: a)63. b) 89. c) 26. d) 720. e) 36. Resolução: Cada caractere é formado por seis pontos, destacados ou não, então: n(E) = n(E) = ___. ___. ___. ___. ___. ___ – ____. ____. ____.____. ___. ____ n(E) = 64 – 1 = 63 caracteres Todas as possibilidades Nenhum ponto destacado Alternativa: A

12 Ao analisar as chances de um paciente que sofrerá uma cirurgia de transplante de coração, um médico levantou as probabilidades de óbito em duas etapas: a cirurgia é o pós-operatório. Concluiu que há 12% de chance de o paciente não resistir à cirurgia, e que durante o pós-operatório as chances de óbito se dividem em dois eventos: 1) probabilidade em 16% para óbito devido à rejeição do órgão transplantado e 2) probabilidade em 9% para óbito devido à infecção hospitalar. A probabilidade de sucesso no transplante é, portanto, a)37% b) 63% c) 66% d) 81,5% e) 88% Exercício: 4

13 Árvore de possibilidades ou diagrama de possibilidades Dispositivo que permite visualizar os efeitos dos princípios de contagem. Dispositivo que permite visualizar os efeitos dos princípios de contagem.

14 Ao analisar as chances de um paciente que sofrerá uma cirurgia de transplante de coração, um médico levantou as probabilidades de óbito em duas etapas: a cirurgia é o pós-operatório. Concluiu que há 12% de chance de o paciente não resistir à cirurgia, e que durante o pós-operatório as chances de óbito se dividem em dois eventos: 1) probabilidade em 16% para óbito devido à rejeição do órgão transplantado e 2) probabilidade em 9% para óbito devido à infecção hospitalar. A probabilidade de sucesso no transplante é, portanto, a)37% b) 63% c) 66% d) 81,5% e) 88% Para que haja sucesso o caminho a ser percorrido é: 88% Cirurgia 12% Óbito Pós 75% Rejeição Infecção Sucesso 16% 9% P(E) = 0,880,75 = 0,66 ou 66% Alternativa: C

15 De quantas maneiras 7 pessoas podem sentar-se num banco de 7 lugares ? Exercício: 5

16 Fatorial ( ! ) Fatorial é uma multiplicação de números naturais em ordem decrescente, de um em um, até um. Então: n! = n.(n – 1).(n – 2).(n – 3) Formalmente temos: 0! = 1 n! = n.(n – 1)! Exemplos: a)4! = = 24 b)6! = = 720 c)

17 De quantas maneiras 7 pessoas podem sentar-se num banco de 7 lugares ? Resolução: n(E) =

18 De quantas maneiras distintas podemos organizar as modelos Ana, Carla, Maria, Paula e Silvia para a produção de um álbum de fotografias promocionais? Exercício: 6

19 Permutação simples Problema de ordenação Quando temos n elementos distintos e queremos ordená-los, devemos ter n posições de escolha. Dessa forma, temos: n posições de escolha para o primeiro elemento; n – 1 posições de escolha para o segundo elemento; n – 2 posições de escolha para o terceiro elemento; n – 3 posições de escolha para o quarto elemento; 2 posições de escolha para o penúltimo elemento; 1 posição de escolha para o último elemento. Assim, a ordenação (permutação) de n elementos distintos é dada por: P n = n.(n – 1).(n – 2).(n – 3) P n = n.(n – 1).(n – 2).(n – 3) P n = n!

20 De quantas maneiras distintas podemos organizar as modelos Ana, Carla, Maria, Paula e Silvia para a produção de um álbum de fotografias promocionais? Resolução: Note que o princípio a ser utilizado na organização das modelos será o da permutação simples, pois formaremos agrupamentos que se diferenciarão somente pela ordem dos elementos. P n = n! P n = 5! P n = P n = 120 Portanto, o número de posições possíveis é 120. Exercício: 6

21 Exercício: 7 Quantos são os anagramas da palavra MATEMÁTICA?

22 Permutação de elementos repetidos deve seguir uma forma diferente da permutação, pois elementos repetidos permutam entre si. Para compreender como isso acontece veja o exemplo a seguir: A permutação da palavra MATEMÁTICA ficaria da seguinte forma: Sem levar em consideração as letras repetidas, a permutação ficaria assim: P 10 = 10! = Agora, como a palavra MATEMÁTICA possui elementos que repetem, como a letra A que repete 3 vezes, a letra T repete 2 vezes e a letra M repete 2 vezes, assim a permutação entre si dessas repetições seria 3!. 2!. 2!. Portanto, a permutação da palavra MATEMÁTICA será: Permutação com elementos repetidos Portanto, com a palavra MATEMÁTICA podemos montar anagramas.

23 Seguindo esse raciocínio podemos concluir que, de uma maneira geral, a permutação com elementos repetidos é calculada utilizando a seguinte fórmula: Dada a permutação de um conjunto com n elementos, alguns elementos repetem vezes, vezes e vezes. Então, a permutação é calculada por: Permutação com elementos repetidos

24 Uma família é composta por quatro pessoas (pai, mãe e dois filhos) que nasceram em meses diferentes do ano. Calcule o número de sequências possíveis dos meses de nascimento dos membros dessa família. Exercício: 8

25 Considerando n a quantidade de elementos distintos de um conjunto qualquer e p um número natural menor ou igual a n. Os agrupamentos com p elementos que podem ser formados é denominado arranjo simples. Indicamos um arranjo simples da seguinte forma: A n, p A fórmula geral utilizada no cálculo da quantidade de arranjos simples é: Arranjo Simples Arranjo Simples Problema de escolha e ordenação

26 Uma família é composta por quatro pessoas (pai, mãe e dois filhos) que nasceram em meses diferentes do ano. Calcule o número de sequências possíveis dos meses de nascimento dos membros dessa família. Resolução: Exercício: 8

27 Júlia deseja viajar e levar 5 pares de sapatos, sabendo que ela possui em seu guarda-roupa 12 pares, de quantas maneiras diferentes Júlia poderá escolher 5 pares de sapatos para a sua viagem? Exercício: 9

28 Na combinação simples, a ordem dos elementos no agrupamento não interfere. São arranjos que se diferenciam somente pela natureza de seus elementos. Portanto, se temos um conjunto A formado por n elementos distintos tomados p a p, qualquer subconjunto de A formado por p elementos será uma combinação, dada pela seguinte expressão: Combinação Simples Problema de escolha

29 Júlia deseja viajar e levar 5 pares de sapatos, sabendo que ela possui em seu guarda-roupa 12 pares, de quantas maneiras diferentes Júlia poderá escolher 5 pares de sapatos para a sua viagem? Resolução: Exercício: 9

30 10) Em uma empresa, quinze funcionários se candidataram para as vagas de diretor e vice-diretor financeiro. Eles serão escolhidos através do voto individual dos membros do conselho da empresa. A partir dessas informações, determine de quantas maneiras distintas essa escolha pode ser feita. (Resposta: 210) 11) Newton possui 9 livros distintos, sendo 4 de Geometria, 2 de Álgebra e 3 de Análise. O número de maneiras pelas quais Newton pode arrumar esses livros em uma estante, de forma que os livros de mesmo assunto permaneçam juntos, é: a)288 b) 296 c) 864 d) 1728 e) 2130 Alternativa: D 12) Um casal e seus quatro filhos vão ser colocados lado a lado para tirar uma foto. Se todos os filhos devem ficar entre os pais, de quantos modos distintos os seis podem posar para tirar a foto? a) 24 b) 48 c) 96 d) 120 e) 720 Alternativa: B

31 13) Um jornalista foi designado para cobrir uma reunião de ministros de Estado. Ao chegar ao local da reunião, descobriu que havia terminado. Perguntou ao porteiro o número de ministros presentes e ele disse: Ao saírem, todos os ministros se cumprimentaram mutuamente, num total de 15 apertos de mão. Com base nessa informação, qual foi o número de ministros que estiveram presentes na reunião? Resposta: 6. 14) Em época de eleição para o grêmio estudantil do colégio, tiveram 12 candidatos aos cargos de presidente, vice-presidente e secretário. De quantos modos diferentes estes candidatos poderão ocupar as vagas deste grêmio? Resposta: 1320

32 Com base nas informações acima, o número de maneiras possíveis de Eddie se deslocar de A até B, sem passar pelo ponto C, é igual a a)192 b) 60 c) 15 d) 252 Resposta: A 15)

33 16) Para montar um sanduíche, os clientes de uma lanchonete podem escolher: Um entre os tipos de pão: calabresa, orégano e queijo; Um entre os tamanhos: pequeno e grande; De um até cinco entre os tipos de recheio: sardinha, atum, queijo, presunto e salame; sem possibilidade de repetição de recheio num mesmo sanduíche. Calcule: a) Quantos sanduíches distintos podem ser montados; (Resposta: 186) b) O número de sanduíches distintos que um cliente pode montar, se ele não gosta de orégano, só come sanduíches pequenos e deseja dois recheios em cada sanduíche. (Resposta: 20) 17) (Resposta: 120)


Carregar ppt "TÓPICOS DE MATEMÁTICA PROFESSOR: LUÍS GUSTAVO. ANÁLISE COMBINATÓRIA: Parte da matemática que trabalha com problemas de contagem. Seu universo de cálculo."

Apresentações semelhantes


Anúncios Google