A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Ensino Superior 5. Derivadas Direcionais, Gradientes e Pontos Críticos Amintas Paiva Afonso Cálculo 3.

Apresentações semelhantes


Apresentação em tema: "Ensino Superior 5. Derivadas Direcionais, Gradientes e Pontos Críticos Amintas Paiva Afonso Cálculo 3."— Transcrição da apresentação:

1 Ensino Superior 5. Derivadas Direcionais, Gradientes e Pontos Críticos Amintas Paiva Afonso Cálculo 3

2 Derivadas Direcionais As derivadas parciais de uma função de duas variáveis f(x,y) são consideradas na direção do eixo x (f x ) ou do eixo y (f y ). Quando se considera uma direção qualquer no domínio de f(x,y), ou seja, no plano xy, têm-se a derivada direcional que vale: Foi considerada a direção do vetor unitário u, u = cos i + sen j

3 . A curva z = f (x, y 0 ) no plano y = y o Esta reta tangente tem coeficiente angular f (x 0, y 0 ) A curva z = f (x, y 0 ) no plano x = x o Esta reta tangente tem coeficiente angular f (x 0, y 0 ) Derivadas Parciais

4 Superfície S: Reta tangente

5 Gradiente de uma função de várias variáveis O segundo termo do produto escalar da derivada direcional é o vetor gradiente. Este vetor fornece a direção e sentido no qual ocorre a maio variação das curvas de níveis da função de duas variáveis.

6 Decréscimo mais rápido de f Aumento mais rápido de f Variação zero de f

7 Curvas de Nível A curva Decréscimo mais rápido de f

8 Exercícios 1) Se f(x,y) = 5x 2 + 3y, ache o gradiente e o valor da função no ponto (1,2). Ache tb a taxa de variação de f(x,y) na direção de 0,25p neste ponto. 2) A temperatura em cada ponto (x,y) de uma placa retangular situada no plano xy é determinada pela expressão: T(x,y) = x 2 + y 2. (a) Ache a taxa de variação da temperatura no ponto (3,4) na direção e no sentido que fazem um ângulo de 0,33p com o eixo x positivo. (b) ache a direção e o sentido em que a taxa de variação no ponto (-3,1) é máxima.

9 Pontos Críticos Máximo e Mínimo Local: a) f(a,b) é um valor máximo local de f(x,y), se f(a,b) > f(x,y) para todos os pontos do domínio (x,y) em um disco aberto centrado em (a,b). b) f(a,b) é um valor mínimo local de f(x,y), se f(a,b) < f(x,y) para todos os pontos do domínio (x,y) em um disco aberto centrado em (a,b). Nestes dois casos f x = f y = 0

10 Máximos e Mínimos Máximo local (não existe um valor de f maior próximo) Mínimo local (não existe um valor de f menor próximo) Superfície z = f(x, y)

11 Máximos e Mínimos

12 No Ponto de Sela.também f x = f y = 0

13 Pontos Críticos de f(x,y) Critérios: (a) Máximo: f xx f yy – (f xy ) 2 > 0 e f xx < 0 (b) Mínimo: f xx f yy – (f xy ) 2 > 0 e f xx > 0 (c) Ponto de sela: f xx f yy – (f xy ) 2 < 0 (d) Teste inconclusivo: f xx f yy – (f xy ) 2 = 0

14 Exercícios 1) Encontrar os valores extremos locais da função f(x,y) = xy - x 2 - y 2 - 2x - 2y+ 4. 2) Encontrar os valores extremos locais da função f(x,y) = xy.

15


Carregar ppt "Ensino Superior 5. Derivadas Direcionais, Gradientes e Pontos Críticos Amintas Paiva Afonso Cálculo 3."

Apresentações semelhantes


Anúncios Google