A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

A Física do século XX Nicolau Nicolau Gilberto Ferraro Toledo Paulo A. Toledo Soares.

Apresentações semelhantes


Apresentação em tema: "A Física do século XX Nicolau Nicolau Gilberto Ferraro Toledo Paulo A. Toledo Soares."— Transcrição da apresentação:

1 A Física do século XX Nicolau Nicolau Gilberto Ferraro Toledo Paulo A. Toledo Soares

2 Lorde Kelvin ( ) Físico inglês Conferência na Royal Society em março de 1900 A completude da Física: A mecânica de Newton O eletromagnetismo de Maxwell A termodinâmica de Boltzmann Não há nada mais a descobrir em Física As duas pequenas nuvens no horizonte da Física

3 As duas nuvenzinhas O fracasso das experiências de Michelson e Morley, ao medir a velocidade da luz através do éter em direções perpendiculares. A dificuldade em explicar a distribuição de energia na radiação de um corpo aquecido.

4 As tempestades das duas nuvenzinhas O nascimento da Física Moderna A teoria da Relatividade A Física Quântica

5 O corpo negro A teoria dos quanta O efeito fotoelétrico O átomo de Bohr A natureza da luz Dualidade onda- partícula Princípio da incerteza

6 Radiações térmicas Um corpo em qualquer temperatura emite radiações eletromagnéticas. Por estarem relacionadas com a temperatura do corpo, costumam ser chamadas de radiações térmicas.

7 O corpo negro Para o estudo das radiações emitidas foi idealizado um corpo, denominado corpo negro. Ele absorve toda radiação incidente, isto é, sua absorvidade é igual a 1 (a = 1) e sua refletividade é nula (r = 0), daí decorrendo seu nome. Todo bom absorvedor é bom emissor; por isso o corpo negro é também um emissor ideal. Sua emissividade é igual a 1 (e = 1). Um modelo prático de corpo negro é obtido com um objeto oco provido de um pequeno orifício: qualquer radiação que penetra nesse orifício não sai mais, sendo absorvida pelas paredes internas do objeto oco. O orifício constitui o corpo negro. Se o objeto oco for aquecido por uma fonte de calor no seu interior, há emissão de radiação pelo orifício.

8 Intensidade da radiação emitida e Comprimento de onda Dados experimentais permitem relacionar a intensidade I da radiação emitida por um corpo negro em função do comprimento de onda, a uma dada temperatura, como mostra a figura: Observe no gráfico que, para dado comprimento de onda, a intensidade da radiação adquire valor máximo.

9 A Lei de Stefan-Boltzmann Repetindo-se a experiência para temperaturas diferentes, obtêm-se os resultados mostrados na figura. Daí, conclui-se que: aumentando-se a temperatura, para dado comprimento de onda, a intensidade da radiação aumenta. A lei de Stefan-Boltzmann, aplicada ao corpo negro fornece a intensidade total I da radiação emitida: I = T 4 onde 5,67 · 10 –8 W / m 2 · K 4 é a constante de Stefan- Boltzmann.

10 Lei do deslocamento de Wien Retomando o gráfico anterior, outra conclusão que pode ser tirada: aumentando-se a temperatura, o pico da distribuição se desloca para comprimentos de onda menores. De acordo com a lei do deslocamento de Wien, temos: I máx · T = 2,898 · 10 –3 m · K

11 A catástrofe do ultravioleta Ao explicar, por meio da teoria clássica, os resultados obtidos observou-se que, para comprimentos de onda elevados, havia razoável concordância com os resultados experimentais. Entretanto, para comprimentos de onda menores, a discordância entre a teoria e a experiência era grande. Essa discordância ficou conhecida como a catástrofe do ultravioleta.

12 A teoria de Planck Em dezembro de 1900, Max Planck ( ) apresentou à Sociedade Alemã de Física um estudo teórico sobre a emissão de radiação de um corpo negro, no qual deduz uma equação plenamente em acordo com os resultados experimentais. Entretanto, para conseguir uma equação a qualquer custo, teve que considerar a existência, na superfície do corpo negro, de cargas elétricas oscilantes emitindo energia radiante não de modo contínuo, como sugere a teoria clássica, mas sim em porções descontínuas, partículas que transportam, cada qual, uma quantidade E bem definida de energia.

13 Os fótons e o quantum As partículas de energia sugeridas por Planck foram denominadas fótons. A energia E de cada fóton é denominada quantum (no plural quanta ). O quantum E de energia radiante de freqüência f é dado por: E = h f Nessa fórmula, h é a constante de proporcionalidade denominada constante de Planck, dada por: h = 6,63 · 10 –34 J·s.

14 Uma nova Física A solução de Planck para a questão do corpo negro, considerando que a energia é quantizada, permitiu explicar outros conceitos físicos a nível microscópico. Embora o desenvolvimento efetivo da nova teoria só tenha ocorrido a partir de 1920, dezembro de 1900 é considerado o marco divisório entre a Física Clássica e a Física Quântica – a teoria física dos fenômenos microscópicos.

15 Efeito fotoelétrico Quando uma radiação eletromagnética incide sobre a superfície de um metal, elétrons podem ser arrancados dessa superfície. Esse fenômeno é denominado efeito fotoelétrico. Os elétrons arrancados são chamados fotoelétrons.

16 A explicação de Einstein Einstein ( ) explicou o efeito fotoelétrico levando em consideração a quantização da energia: um fóton da radiação incidente, ao atingir o metal, é completamente absorvido por um único elétron, cedendo-lhe sua energia hf. Com essa energia adicional o elétron pode escapar do metal. Essa teoria de Einstein sugere, portanto, que a luz ou outra forma de energia radiante é composta de partículas de energia, os fótons.

17 A função trabalho Função trabalho é o nome que se dá à energia mínima necessária para que um elétron escape do metal. Seu valor varia de metal para metal. Metal Função trabalho Sódio2,28 eV Alumínio4,08 eV Zinco4,31 eV Ferro4,50 eV Prata4,73 eV

18 Equação fotoelétrica de Einstein

19 Freqüência mínima ou freqüência de corte Existe uma freqüência mínima (f 0 ) chamada freqüência de corte para a qual o elétron escapará se a energia que ele receber do fóton (hf 0 ) for igual à energia mínima.

20 Gráfico E c(máx) em função de f

21 Comparando partícula e fóton Partícula 1.E = E cin +E pot (E: energia mecânica) 2.Q = mv (Q: quantidade de movimento) Fóton 1.E = hf (E: quantum de energia) 2.Q = h/ (Q: quantidade de movimento)

22 O modelo de Bohr aplicado ao átomo de hidrogênio 1º postulado O elétron descreve órbitas circulares em torno do núcleo, formado por um único próton. A força eletrostática é a força centrípeta responsável por esse movimento.

23 O modelo de Bohr aplicado ao átomo de hidrogênio 2º postulado Apenas algumas órbitas estáveis, denominadas estados estacionários, são permitidas ao elétron. Nelas o átomo não irradia energia. 3º postulado A passagem de um elétron de um estado para outro é possível mediante absorção ou liberação de energia: E- E = hf

24 O modelo de Bohr aplicado ao átomo de hidrogênio 4º postulado As órbitas permitidas ao elétron são aquelas em que o momento angular orbital é um múltiplo inteiro de Assim: ( n=1,2,3,...) Raios das órbitas permitidas: : raio de Bohr ( corresponde ao estado fundamental).

25 Energia mecânica do elétron no n-ésimo estado estacionário

26 Natureza Dual da Luz Em determinados fenômenos, a luz se comporta como se tivesse natureza ondulatória (interferência, difração) e, em outros, natureza de partícula (efeito fotoelétrico). As duas teorias da natureza da luz se completam. Cada teoria por si só é correta para explicar determinado fenômeno. Não há fenômeno luminoso que nenhuma delas possa explicar.

27 Dualidade onda-partícula: Hipótese de De Broglie Hipótese de De Broglie ( ) Se a luz apresenta natureza dual, uma partícula pode comportar-se de modo semelhante, apresentando também propriedades ondulatórias. O comprimento de onda de uma partícula em função da quantidade de movimento é dado por:

28 Princípio da incerteza de Heisenberg ( ) Quanto maior a precisão na determinação da posição do elétron, menor a precisão na determinação de sua quantidade de movimento e vice-versa. Deus não joga dados com o Universo (Einstein) Einstein, pare de dizer a Deus o que ele deve ou não fazer." (Niels Bohr) "Deus não só joga dados, como os esconde..." ( Stephen Hawking)

29 Noções de Radioatividade As reações que alteram os núcleos atômicos são chamadas reações nucleares. A radioatividade consiste na emissão de partículas e radiações eletromagnéticas por núcleos instáveis, que se transformam em núcleos mais estáveis. Estas reações são chamadas reações de desintegração radioativa ou de transmutação ou ainda de decaimento. No decaimento natural de um núcleo atômico, podem ser emitidas partículas, partículas e raios.

30 Meia-vida (p) ou período de semidesintegração A meia-vida p de um elemento radiativo é o intervalo de tempo após o qual o número de átomos radiativos existentes em certa amostra fica reduzido à metade. Após um intervalo de tempo t = x · p, restam átomos que ainda não desintegraram. A última igualdade vale também para as massas.


Carregar ppt "A Física do século XX Nicolau Nicolau Gilberto Ferraro Toledo Paulo A. Toledo Soares."

Apresentações semelhantes


Anúncios Google