A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

INF 1771 – Inteligência Artificial Aula 15 – Incerteza Edirlei Soares de Lima.

Apresentações semelhantes


Apresentação em tema: "INF 1771 – Inteligência Artificial Aula 15 – Incerteza Edirlei Soares de Lima."— Transcrição da apresentação:

1 INF 1771 – Inteligência Artificial Aula 15 – Incerteza Edirlei Soares de Lima

2 LOGO Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local Agentes baseados em lógica: Lógica proposicional Lógica de primeira ordem Agentes baseados em planejamento: Planejamento de ordem parcial Planejamento em ambientes não-determinísticos

3 LOGO Incerteza Agentes raramente tem acesso à toda verdade sobre o ambiente. Mundo de Wumpus: Apenas informações locais. Maior parte do ambiente não é imediatamente observável. Incerteza de fatos: O mundo real é muito mais complexo do que o mundo de wumpus. Informações não garantem resultados.

4 LOGO Incerteza Exemplo: Levar alguém ao aeroporto para pegar um vôo. Seja a ação A t = sair para o aeroporto t minutos antes do vôo. A t levará o passageiro ao aeroporto a tempo? Dificuldades de saber o resultado da ação: Estados parcialmente observáveis. Estados das estradas, trânsito, etc. Sensores ruidosos. Relatórios de trânsito Incerteza quanto ao efeito das ações. Acidentes, pneu furado, etc. Grande complexidade em prever e modelar o trânsito.

5 LOGO Incerteza Um procedimento puramente lógico não é muito útil nesse caso: Arriscaria deduzir algo potencialmente falso: A 45 me levará a tempo ao aeroporto Levaria a conclusões fracas para tomada de decisões: A 45 me levará a tempo ao aeroporto, se nenhum acidente ocorrer na ponte, se não chover, se nenhum pneu furar, etc. Levaria a conclusões que não práticas: A 1440 me levará a tempo ao aeroporto

6 LOGO Incerteza O plano escolhido deve maximizar a performance do agente. Chegar no aeroporto a tempo. Não perder tempo esperando no aeroporto. O agente não tem como garantir nenhum sucesso em seus objetivos. Mas ele pode prever um certo grau de crença que ele terá sucesso em seus objetivos.

7 LOGO Incerteza A coisa certa a se fazer depende da importância dos objetivos e da probabilidade de que eles serão alcançados. É necessário lidar com a incerteza e a imprecisão dos ambientes.

8 LOGO Incerteza Considerando a seguinte regra em lógica de primeira ordem: p Sintoma(p, Dor_de_Dente) Doença(p, Cáries) A regra esta errada. Nem todas as pessoas que tem dor de dente tem cáries, algumas podem ter outras doenças. p Sintoma(p, Dor_de_Dente) Doença(p, Cáries) Doença(p, Gengivite) Doença(p, Abscesso)... Para tornar essa regra verdadeira seria necessário adicionar a ela uma lista infinita de possibilidades.

9 LOGO Incerteza Tentar utilizar lógica de primeira ordem para lidar com um domínio de diagnóstico médico falha por três razões: Preguiça: É muito trabalho listar o conjunto completo de sentenças necessárias para garantir uma regra sem exceção. Ignorância teórica: A medicina não tem nenhuma teoria completa para todos os domínios. Prático ignorância: Mesmo conhecendo todas as regras, poderiam existir dúvidas sobre um determinado paciente. Este tipo de problema afeta também outros domínios: Negócios, Direito, Design, Reparação automóveis, Jardinagem...

10 LOGO Fontes de Incerteza Informações precisas podem ser muito complexas para serem modeladas. É necessário lidar com informações incompletas. Implicações podem ser modeladas de forma mais fraca: Dor_de_Dente(0.7) Doença(Cáries) Quantificação do número de vezes em que a regra se aplica.

11 LOGO Fontes de Incerteza Conflito de informações: Especialistas distintos podem fornecer informações conflitantes e incertas. Propagação de incertezas: Fatos com um certo grau de incerteza implicam em outros fatos com um grau de incerteza ainda maior. Exemplo: a b b c a b bc 1 1 a b bc

12 LOGO Lidando com a Incerteza A principal ferramenta para se lidar com a incerteza é a teoria da probabilidade. Busca-se atribuir um grau de crença numérica (entre 0 e 1) a cada sentença. Modela-se o grau de crença de um agente dadas as evidências disponíveis: A 25 chegará a tempo ao aeroporto com probabilidade 0.04 A 45 chegará a tempo ao aeroporto com probabilidade 0.85 A 60 chegará a tempo ao aeroporto com probabilidade 0.95

13 LOGO Probabilidade A probabilidade subjetiva ou bayesiana estabelece o estado de crença do agente em uma sentença dadas as evidências. P(A 25 |nenhum acidente) = 0.06 A probabilidade de um sentença muda quando novas evidências chegam. P(A 25 |nenhum acidente) = 0.06 P(A 25 |nenhum acidente, 5 a.m.) = 0.15

14 LOGO Decisões sob Incerteza Supondo o seguinte conjunto de crenças: P(A 25 |...) = 0.04 P(A 90 |...) = 0.70 P(A 120 |...) = 0.95 P(A 1440 |...) = Que ação o agente deve tomar? Depende da preferência entre perder o vôo versus o tempo esperando no aeroporto. Teoria da utilidade = representação de preferências Teoria da decisão = teoria da probabilidade + teoria da utilidade

15 LOGO Introdução à Probabilidade Elemento básico da probabilidade é uma variável aleatória. Semelhante a lógica proposicional e de primeira ordem, onde os mundos possíveis são definidos pela atribuição de valores às variáveis. Cada variável aleatória tem um domínio que determina seus valores possíveis. Tipos de domínio: Booleano, exemplo: Cárie possui valores em Discreto, exemplo: Clima possui valores em Contínuo, exemplo: Temperatura

16 LOGO Introdução à Probabilidade Proposições elementares: São construídas através da atribuição de valores a variáveis. Exemplo: Cárie = falso, Clima = chuvoso Proposições complexas: São formadas a partir de proposições elementares e conectivos lógicos padrão. Exemplo: Clima = chuvoso Cárie = falso

17 LOGO Introdução à Probabilidade Um evento atômico consiste da especificação completa do estado do mundo sobre o qual o agente está incerto. Uma atribuição de valores a TODAS as variáveis das quais o mundo é formado. Exemplo: Cárie = verdadeiro DorDeDente = verdadeiro Cárie = verdadeiro DorDeDente = falso Cárie = falso DorDeDente = verdadeiro Cárie = falso DorDeDente = falso

18 LOGO Probabilidade a priori O grau de crença em uma proposição na ausência de outras informações pode ser definida da seguinte maneira: P(Cárie = verdadeiro) = 0.1 P(Clima = ensolarado) = 0.72 Distribuição de probabilidades: P(Clima) = (0.7, 0.2, 0.08, 0.02) Distribuição de probabilidade da variavel randomica Clima = (ensolarado, chuvoso, nublado, neve)

19 LOGO Distribuição de Probabilidade Conjunta Probabilidades de todas as combinações de valores de um conjunto de variáveis aleatórias. P(Clima, Cárie) = tabela 4 x 2 de valores de probabilidade. Uma distribuição conjunta total especifica a probabilidade de qualquer evento atômico. Qualquer probabilidade nesse domínio pode ser calculada a partir da distribuição conjunta total. Climaensolaradochuvosonubladoneve Cárie = verdadeiro Cárie = falso

20 LOGO Probabilidade Condicional ou a posteriori O grau de crença em uma proposição dada a presença de novas evidências pode ser definido utilizando a notação P(a|b): P(Cárie = verdadeiro | Dor_De_Dente = verdadeiro) = 0.6 P(Cárie = verdadeiro | Dor_De_Dente = verdadeiro, Escova_Dentes_Regularmente = false) = 0.7 P(a|b) = A probabilidade de a dado todo o conhecimento b.

21 LOGO Probabilidade Condicional A probabilidade condicional pode ser definida em termos de probabilidades a priori: se P(b) > 0 A mesma equação também pode ser escrita da seguinte maneira utilizando a regra do produto: Ou:

22 LOGO Axiomas da Probabilidade Para quaisquer proposições A, B: P(A) 0 e P(A) 1 P(Verdade) = 1 P(Falso) = 0 P(A B) = P(A) + P(B) - P(A B)

23 LOGO Probabilidade A probabilidade de uma proposição é igual à soma das probabilidades dos eventos atômicos em que ela é válida: Essa equação permite calcular a probabilidade de qualquer proposição dada uma distribuição conjunta total que especifique todos os eventos atômicos.

24 LOGO Inferência Probabilística Inferência probabilística consiste na computação da distribuição de probabilidade posterior para um conjunto de variáveis de consulta C dada alguma evidência observada. A inferência é realizada com o uso de distribuições conjuntas totais. Ou seja, uma base de conhecimento a partir da qual são derivadas respostas para todas as consultas.

25 LOGO Inferência Probabilística Suponha um domínio com a seguinte distribuição conjunta total: Para qualquer proposição a, P(a) é a soma dos eventos atômicos w onde a ocorre: Dor_De_Dente¬Dor_De_Dente Sonda¬SondaSonda¬Sonda Cárie ¬Cárie

26 LOGO Inferência Probabilística Suponha um domínio com a seguinte distribuição conjunta total: Para qualquer proposição a, P(a) é a soma dos eventos atômicos w onde a ocorre: P(Dor_De_Dente) = = 0.2 Dor_De_Dente¬Dor_De_Dente Sonda¬SondaSonda¬Sonda Cárie ¬Cárie

27 LOGO Inferência Probabilística Suponha um domínio com a seguinte distribuição conjunta total: Para qualquer proposição a, P(a) é a soma dos eventos atômicos w onde a ocorre: P(Dor_De_Dente Cárie) = = 0.28 Dor_De_Dente¬Dor_De_Dente Sonda¬SondaSonda¬Sonda Cárie ¬Cárie

28 LOGO Inferência Probabilística É possível também calcular probabilidades condicionais: Dor_De_Dente¬Dor_De_Dente Sonda¬SondaSonda¬Sonda Cárie ¬Cárie

29 LOGO Inferência Probabilística O denominador pode ser visto como uma constante de normalização α. Dor_De_Dente¬Dor_De_Dente Sonda¬SondaSonda¬Sonda Cárie ¬Cárie

30 LOGO Problemas com a inferência por enumeração Complexidade de tempo (pior caso): O(d n ) onde d é a cardinalidade do maior domínio e n é o número de variáveis. Complexidade de espaço: O(d n ) para armazenar a distribuição conjunta. Como encontrar as probabilidades para O(d n ) elementos?

31 LOGO Independência X e Y são independentes se e somente se: P(X|Y) = P(X) ou P(Y|X) = P(Y) ou P(X,Y) = P(X)P(Y) Exemplo: P(Dor_De_Dente, Sonda, Cárie, Clima) Tabela com 32 elementos. P(Dor_De_Dente,Cárie,Sonda,Clima) = P(Dor_De_Dente,Cárie,Sonda)P(Clima) Cárie Dor_De_Dente Sonda Clima Dor_De_Dente Cárie Clima Sonda Decomposição Tabela com 12 elementos

32 LOGO Teorema de Bayes Seja: P(A | B) a probabilidade de que a hipótese A seja verdadeira dada a evidência B. P(B | A) a probabilidade que a evidência B será observada se a hipótese A for verdadeira. P(A) a probabilidade a priori que a hipótese A é verdadeira na ausência de qualquer evidência específica. k o número de hipóteses possíveis. O Teorema de Bayes é formulado como:

33 LOGO Regra de Bayes – Exemplo Para aplicar a regra de Bayes é necessário três termos: Uma probabilidade condicional. Duas probabilidades incondicionais. Exemplo de diagnostico médico: um médico sabe que a meningite causa torcicolo em 50% dos casos. Porém, o médico também conhece algumas probabilidades incondicionais que dizem que, um caso de meningite atinge 1/50000 pessoas e, a probabilidade de alguém ter torcicolo é de 1/20.

34 LOGO Regra de Bayes – Exemplo Considerando: T = probabilidade incondicional de um paciente ter torcicolo: P(T) = 1/20 M = probabilidade incondicional de um paciente ter meningite. P(M) = 1/50000 P(T|M) = 0.5 (probabilidade de ter torcicolo tendo meningite)

35 LOGO Regra de Bayes – Exemplo Aplicando a regra de Bayes: É esperado que apenas 1 em 5000 pacientes com torcicolo tenha meningite.

36 LOGO Regra de Bayes – Exemplo Apesar de torcicolo ser um fortemente indicativo de meningite (com probabilidade 0.5), a probabilidade de meningite no paciente permanece pequena.

37 LOGO Regra de Bayes – Combinando Evidencias P(Cárie|Dor_De_Dente Sonda) = α = Utilizando o conceito de independência é possível reduzir o problema de escala em problemas mais complexos. Funcionaria se Dor_De_Dente e Sonda fossem independentes, mas eles não são. Essas variáveis são independentes somente dado a presença ou a ausência de Cárie.

38 LOGO Regra de Bayes – Combinando Evidencias Dor_De_Dente e Sonda são causas diretas de Cárie, mas não tem nenhum efeito direto uma sobre a outra. P(Dor_De_Dente Sonda|Cárie) = P(Dor_De_Dente|Cárie)P(Sonda|Cárie) Para obter a probabilidade de Cárie: P(Cárie|Dor_De_Dente Sonda) = α P(Dor_De_Dente|Cárie)P(Sonda|Cárie)P(Cárie)


Carregar ppt "INF 1771 – Inteligência Artificial Aula 15 – Incerteza Edirlei Soares de Lima."

Apresentações semelhantes


Anúncios Google