A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Modelos de Redes Complexas Ricardo Prudêncio. Como as redes se formam?

Apresentações semelhantes


Apresentação em tema: "Modelos de Redes Complexas Ricardo Prudêncio. Como as redes se formam?"— Transcrição da apresentação:

1 Modelos de Redes Complexas Ricardo Prudêncio

2 Como as redes se formam?

3 Redes Aleatórias Erdõs e Rényi (50-60)

4 Redes Aleatórias Erdõs e Rényi - Random Graph Model Conjunto fixo de n nós links se formam de maneira puramente aleatória G(N,p) Número de nós do grafo Probabilidade de ocorrência de uma aresta entre dois nós Suposição básica: Arestas são criadas de forma aleatória com igual probabilidade independente dos nós

5 Redes Aleatórias G(N,p) tem propriedades que pode ser definidas de forma analítica Tamanho médio Grau médio

6 Redes Aleatórias G(N,p) não define uma única rede – i.e., Pode levar a diferentes realizações (conjunto de redes possíveis com diferentes probabilidades) N=10 p=1/6

7 O que fazer com esse modelo?! Simulações!!!

8 Redes Aleatórias - Evolução Redes complexas evoluem a partir da conexão de nós inicialmente isolados Qual o tamanho esperado do maior componente da rede???

9 Redes Aleatórias - Evolução Na maioria das redes, é crucial existir um componente gigante com alta fração dos nós – E.g., Estruturas de comunicação não são úteis sem um componente gigante – E.g., Em redes sociais, um componente gigante é condição para observar uma divulgação Quando a rede emerge a partir de um conjunto desordenado de indivíduos pouco conectados?

10 Redes Aleatórias - Evolução Tamanho médio do componente gigante sobre diferentes realizações do modelo aleatório Grau médio Componente Gigante (Fração em relação a N - %) 1 100% Transição de fase Transição de fase = tamanho do componente gigante começa a crescer exponencialmente

11 Redes Aleatórias - Evolução A medida que a rede cresce: – Um componente gigante emerge quando o grau médio ultrapassar um limiar (baixo) – O restante dos nós compõem um número de componentes pequenos sem conexão

12 Redes Aleatórias Outras características importantes – Distância entre nós – Distribuição do grau dos nós – Transitividade (coeficiente de clustering)

13 Redes Aleatórias – Distância dos Nós Distância entre nós é pequena (fenômeno de mundo pequeno) Distância cresce apenas de forma logaritmica com o tamanho da rede

14 Redes Aleatórias – Grau do Nós Distribuição do Grau Seleciona k nós de N-1 Probabilidade de ter k arestas Probabilidade de não observar N-1-k arestas Crítica -Existe uma quantidade razoável de nós com grau próximo à média -Existe uma quantidade pequena de nós cujo grau difere muito da média Isso não acontece comumente em redes reais

15 Redes Aleatórias - Transitividade Coeficiente de Clustering – Qual a probabilidade de dois nós com um vizinho em comum serem conectados? – Em um modelo G(N,p), temos simplesmente: ? A B C Transitividade Crítica: -C tende a zero para N grande e um grau médio fixo Isso também não ocorre com frequência em redes reais

16 Redes Aleatórias Crítica: modelo inadequado para descrição de fenômenos reais – E.g. coeficiente de clustering e distribuição de grau não refletem o que se observa em redes reais Entretanto: – (1) bastante usado para simulações e comparações com redes reais – (2) fácil de analisar fenômenos que ocorrem no mundo real E.g. evolução para redes altamente conectadas

17 Redes de Mundo Pequeno Watts and Strogatz, Nature, (1998).

18 Fenômeno de Mundo Pequeno Distância entre nós de uma rede é tipicamente pequena Independente do tamanho da rede Experimento de Milgram (1960) – Seis graus de separação

19 Modelo de Mundo Pequeno Meio termo entre redes regulares e redes aleatórias

20 Modelo de Mundo Pequeno APPLET

21 Modelo de Mundo Pequeno Distância típica pequena e transitividade alta Mas... distribuição de grau é uniforme assim como no modelo aleatório – I.e. nós são relativamente igualitários na rede

22 Redes Sem Escala R. Albert, H. Jeong, A-L Barabasi, Nature, (1999).

23 World Wide Web Nodes: Documentos WWW Links: URLs 3 bilhões de documentos ROBOT: coletava todas as URLs em um documento e as seguia recursivamente Modelo Aleatório (Esperado) P(k) ~ k - Observado R. Albert, H. Jeong, A-L Barabasi, Nature, (1999).

24 World Wide Web Distribuição dos nós não é igualitária como no modelo aleatório – Poucos nós com muitos links (Hubs) Existência de Hubs acontece em muitas redes complexas reais

25 Distribuição – Lei de Potência Malha Viária Malha Aérea

26 Redes Sem Escala Redes cuja distribuição dos graus dos nós seguem uma lei de potência – Scale-free Networks = Diversas redes reais têm a característica básica de redes sem escala – E.g., Internet, redes de proteínas, redes de colaboração, redes de citação,... P(k) ~ k -

27 Nós: usuários online Links: contatos ONLINE COMMUNITIES Twitter: Jake Hoffman, Yahoo, Alan Mislove, Measurement and Analysis of Online Social Networks

28 Nós: atores Links: atuaram juntos N = 212,250 actors k = P(k) ~k- Days of Thunder (1990) Far and Away (1992) Eyes Wide Shut (1999) =2.3 ACTOR NETWORK

29 H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, (2001) Nós: proteínas Links: interações físicas (binding) TOPOLOGY OF THE PROTEIN NETWORK

30 ( = 3) (S. Redner, 1998) P(k) ~k PRL papers (1988) Network Science: Scale-Free Property February 7, 2011 SCIENCE CITATION INDEX Nós: papers Links: citações

31 Redes Sem Escala - Formação Redes sem escala se forma seguindo o princípio da conexão preferencial Conexão preferencial = nós bem conectados tendem a receber mais links no futuro – Plausível em muitos contextos (e.g. páginas Web) Princípio Rich Get Richer – Herbert Simon

32 Redes Sem Escala - Formação Simulação: (A)Crescimento: a cada momento adicione um novo nó à rede (B)Conexão Preferencial: conecte o novo nó a dois nós existentes. A probabilidade de escolha de um nó para ligação é proporcional ao grau do nó

33 Redes Sem Escala - Formação

34

35 Redes Sem Escala - Implicações Existência de um pequeno número hubs com papel estrutural de conectar a rede – Em muitos casos, observa-se uma hierarquia de hubs – Alta resiliência a falhas aleatórias e baixa tolerância a ataques direcionados – Papel importante em processos de difusão

36

37 Considerações Finais Vimos modelos de redes bastante conhecidos Entretanto existem outros modelos importantes – E.g., Hierarquical Random Graphs

38 Considerações Finais Alguns contextos requerem modelos bem específicos – E.g. Chains of Affection: Bearman et al. (2004)

39 Material de Estudo Networks: An Introduction (M. Newman) Linked: A Nova Ciência das Redes (A-L. Barabási)

40 Material de Estudo Parte da aula gerada a partir dos slides de Barabási em: –


Carregar ppt "Modelos de Redes Complexas Ricardo Prudêncio. Como as redes se formam?"

Apresentações semelhantes


Anúncios Google