A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 – 6º Período E Dinâmica.

Apresentações semelhantes


Apresentação em tema: "UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 – 6º Período E Dinâmica."— Transcrição da apresentação:

1 UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 – 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor: Dr. Damiano da Silva Militão.

2 Tema de aula 5: Flambagem de Colunas SEQUÊNCIA DE ABORDAGENS: 5.1 Carga Crítica em Coluna Ideal com Apoios de Pino 5.2 Colunas com Vários Tipos de Apoio 5.3 Fórmula da Secante 5.4 Flambagem inelástica, Projetos concêntricos e excêntricos (Curiosidade) OBJETIVOS: Determinar carga axial crítica para flambagem de colunas ideais e reais. Discutir métodos para projetar colunas com cargas concêntricas e excêntricas. Não é conhecer muito, mas o que é útil, que torna um homem sábio. THOMAS FULLER, M.D.

3 5.1 Carga Crítica em Coluna Ideal com Apoios de Pino Elementos compridos e esbeltos, submetidos à uma carga axial crítica de compressão P cr, estarão em equilíbrio instável, sujeitos à Flambar, e podem falhar subitamente; Definição de P cr para uma coluna apoiada em pino; Em uma coluna ideal (homogênea, carga no centróide,linear elástica, fletindo em plano único), P aumentaria até escoar longitudinalmente, Se atingido um P cr ; com qq pequena F lateral ela fletirá, retirando F ela ficará fletida, se ela retornar é pq P

(sol. trivial, coluna reta) Se, ou P cr será primeira e menor carga (quando n=1); Neste estado teremos; Conclusões; -P cr aumenta se L diminui ou I aumenta (seção transv. longe do eixo centroidal) -Flambagem ocorre no eixo da seção transversal de menor I. Ex: -Logo sessões circulares e quadradas são ótimos. (Carga de Euler) (p/ elástica com pequeno v) (veja que; v máx = C 1 em x=L/2 )

4 è conveniente expressar (A= área da seção, r = raio de giração da área) então:, Logo: Resumindo: O denominador (L/r) é denominado índice de esbeltez (mede flexibilidade e classifica como comprida, curta ou média) (veremos melhor à frente). Gráfico tensão crítica x índice de esbeltez; Ex: (Substituindo (σ E ) aço =36ksi em σ cr na fórmula, obtemos o menor índice de esbeltez admíssivel > 89. Para L/r > 89, estamos na região elástica, e podemos usar a fórmula de Euler para obter P cr de flambagem.

5 Exemplo: Uma coluna construída com perfil W8 X 31 de aço A-36, deve ser usado como representado. Determinar a maior carga axial que ela suportará antes que a flambagem se inicie ou o aço escoe saben- do que seu comprimento é de 12 pés. Sol: Observando a tabela do Apêndice B temos: Logo a flambagem ocorre em y-y (menor I). Aplicando a fórmula de Euller vemos qual deveria ser a carga crítica para as dimensões dadas; Esta carga daria uma tensão média de; Tensão está acima do do aço (tabela), Então limitamos a carga pelo escoamento na compressão e não pela flambagem na fórmula de Euller (que valeria apenas na região elástica ultrapassada); Obs: Poderíamos obter σ cr por com o raio de giração r=2,02pol(tabela), confira!

6 Fazer: A alavanca de Aço A-36 é usada para operar uma prensa simples que comprime latas. Determinar o menor diâmetro d da haste BC, com aproximação de 1/8 pol, que pode ser usado se a força máxima P aplicada à alavanca é P = 60 lb. A haste está presa por pino nas extremidades.

7 5.2 Colunas com Vários Tipos de Apoio Vimos, na fórmula de Euler para 2 apoios de pino, que o comprimento total da viga (L) representava a distância entre os pinos (pts onde o Momento fletor é nulo). Para usar Euler em outros tipos de apoio, basta determinar o comprimento efetivo (Le) entre os pts de Momento fletor nulo (vimos no tema 4 que eles ocorrem nos pts de inflexão). Veja; Logo; Mas usa-se um fator de comprimento efetivo (k); Veja; Então; e Aqui é o índice de esbeltez efetivo.

8 Exemplo: A coluna de tubo de aço A-36 com 12 pés de altura tem diâmetro externo de 3 pol e espessura de 0,25 pol. Determinar a carga crítica supondo que a extremidade inferior esteja engastada e a superior seja presa por pino. Sol: As propriedades da seção são; A fórmula de Euler para apoio pino/engaste será; onde k=0.7. Obtemos a tensão: que não extrapola a tensão de escoamento 36kip do aço A-36. Portanto a análise por Euler é valida e P cr =58kip.

9 Fazer: O piso é suportado pelas duas colunas quadradas de 40 mm de lado. A coluna AB está presa por pino em A e engastada em B, enquanto CD está presa por pino em C e D. Supondo que o piso esteja impedido de se movimentar para os lados, determinar a carga mais pesada que pode ser aplicada sobre ele sem provocar flambagem das colunas. O centro de gravidade da carga está localizado em d = 2 m. Ambas as colunas são feitas de abeto Douglas.

10 5.3 Fórmula da Secante Euler pressupôs P aplicada no centróide, e coluna mantendo-se reta até flambar em P cr. Considerando; A e B em pinos, elástica e deflexões pequenas. Analisaremos como em 5.1; Temos; (Eq. Dif. ñ Homogênea) Sol. Geral; as C.C fornecem as ctes; ; Fazemos as subst. trig.;, e -> ; Assim escrevemos a equação da deflexão; v máx ocorre no centro,, então reescrevemos; FÓRMULA DA SECANTE: È sabido que σ máx na seção (fig. (b)) é dada por; Vemos na fig. (b) que Mas na realidade flambagem inicia ao aplicar P (como se P fosse aplicada e excêntrica). Portanto; Atenção: quando não há excentricidade (e=0), e sec. tende para infinito, obtemos a carga axial no centróide P=P cr ; (novamente Euler se e=0) Lançando M e v máx (com I=r 2 A), na fórmula da tensão normal máx. acima, temos a FÓRMULA DA SECANTE; RESUMINDO;

11 Graficamente relacionamos (esbeltez relativa) X (tensão média) Para diferentes razões de excentricidade; Note que; Se e=0, temos a curva de Euler (P/A=P cr /A) Estamos na reg. Elástica->gráfico não ultrapassa σ E =36ksi. e tem efeito mais marcante para esbeltez menor. Mais esbeltos falham próximo à Euler, qq que seja e. Concluindo para projetar; 1º determinamos, e a σ máx admissível (σ E ) da coluna. 2º estimamos P E através de P/A por tentativas na fórmula ou no gráfico Atenção; P E =P cr apenas se e=0 (Euler), caso contrário (carga excêntrica) teremos P E


12 Exemplo: O elemento de aço A-36, perfil W14 X 30, usado como uma coluna de 20 pés engastada na base e no topo. Determine a carga excêntrica máxima P de modo que ela não sofra flambagem nem escoe. Comparar esse valor com uma carga axial crítica P aplicada através do centroide da coluna. Sol: As propriedades da seção são tabeladas; A fórmula de Euler estima a carga crítica quando e=0; (flambagem neste caso ocorre em y-y (menor I obtido)) (engaste/engaste) Euler só vale na região elástica, vamos ver se P atinge a tensão de escoamento; (Limite extrapolado (> 36ksi)) Então limitamos P pela tensão de escoamento; Considerando a carga excêntrica como mostrada, flamba em x-x, vamos buscar P que admita σ máx = σ E =36ksi através da fórmula da secante, ; Resolvendo por tentativa e erro; (limitamos por esta carga excêntrica )

13 Fazer: O elemento de aço A-36, perfil W14 X 30, usado como uma coluna de 20 pés livre em cima e engastada na base. Determinar a carga excêntrica máxima P de modo que ela não sofra flambagem nem escoe. Comparar esse valor com uma carga axial crítica P aplicada através do centroide da coluna.

14 5.4 Flambagem inelástica, Projetos concêntricos e excêntricos (Curiosidade) Flambagem inelástica: Vimos que colunas longas (esbeltez > (KL/r) lp ) flambam com tensão elástica abaixo de σ E (=σ lp )(usamos Euler) Colunas intermediárias ou curtas (esbeltez<(KL/r) lp ) escoam plasticamente com tensão σ D acima de σ E (=σ lp ) (usamos algum Euler modificado); EX: Engessener (ou módulo da tangente) -> -> -> Supõe que E t é inclinação no pt D do diag. σ-ε; Projetos concêntricos: Usam normas de associações com fórmulas e fatores de segurança de acordo com o índice de esbeltez, Ex: Col. Alumínio (2014T6) (Aluminum Association), Projetos excêntricos: (existem vários modelos) O + simples é conservadoramente supor toda a seção submetida à σ max, e analisar se (σ adm do projeto concêntrico anterior). Aumentar A até satisfazer desigualdade. Engessener

15 MUITO OBRIGADO PELA ATENÇÃO! – Bibliografia: – R. C. Hibbeler – Resistência dos materiais – 5º Edição.


Carregar ppt "UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 – 6º Período E Dinâmica."

Apresentações semelhantes


Anúncios Google