A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Considerações iniciais * Rutherford (Prêmio Nobel de Química – 1908) Radioatividade * Bohr (Prêmio Nobel de Física – 1922) * Chadwick (descobriu o NÊUTRON.

Apresentações semelhantes


Apresentação em tema: "Considerações iniciais * Rutherford (Prêmio Nobel de Química – 1908) Radioatividade * Bohr (Prêmio Nobel de Física – 1922) * Chadwick (descobriu o NÊUTRON."— Transcrição da apresentação:

1

2 Considerações iniciais * Rutherford (Prêmio Nobel de Química – 1908) Radioatividade * Bohr (Prêmio Nobel de Física – 1922) * Chadwick (descobriu o NÊUTRON ) - Aluno de Rutherford

3 Considerações iniciais * Röntgen - Descobriu o raio-X * Becquerel (Prêmio Nobel de Física – 1903) - Estudando os raios-X, descobriu a radioatividade natural do Urânio * Pierre e Marie Curie (Prêmio Nobel de Química – 1911) - Dividiram o prêmio com Becquerel - Descobriram o Rádio e o Polônio * Frédéric Joliot e Irène Joliot-Curie (Nobel de Química – 1935) - Descobriram elementos artificiais radioativos: N-13, P-30, Si-27, Al-28. Radioatividade

4 Experimento de Rutherford sobre o desvio das emissões radioativas naturais Radioatividade

5 Tipos de radiação e suas características * Partícula alfa (α) - Tem baixa velocidade comparada a velocidade da luz ( Km/s). - 1ª Lei da Radioatividade – Frederick Soddy: * Partícula beta (β) - Tem alta velocidade, aproximadamente Km/s - 2ª Lei da Radioatividade- Soddy Fajans- Russel: - Nêutrons (n): formadores de partícula Beta Radioatividade

6 Tipos de radiação e suas características * Radiação Gama (γ) - São ondas eletromagnéticas. - Velocidade igual a velocidade da luz ( Km/s). - Não são representadas nas equações nucleares. * Raio X - São ondas eletromagnéticas idênticas aos raios gama. - Diferem apenas quanto à origem: raios gama: se originam dentro do núcleo atômico; raios X: têm origem fora do núcleo, na excitação dos elétrons. Radioatividade Curiosidade: O físico alemão Roentgen (pronúncia portuguesa: rêntguen) observou que saíam raios misteriosos de uma ampola de Crookes (físico inglês), capazes de atravessar folhas de papelão. Por isso, ele os chamou de raios X

7 Penetração das radiações na matéria Radioatividade

8

9 Decaimento radioativo: meia-vida

10 Radioatividade Aplicações da radiação APLICAÇÕES EM MEDICINA Diagnóstico de doenças - Radioisótopo é ingerido para obter o mapeamento do organismo. - Iodo-131 = meia-vida 8 dias. - Absorvido pela glândula tireóide, onde se concentra. - Detector observa o quanto foi absorvido de iodo pela tireóide. - Obtêm-se um mapeamento da tireóide. - um radiodiagnóstico é feito por comparação com um mapa padrão de uma tireóide normal. Exemplo de radiodiagnóstico da tireóide usando I área mais brilhante indica maior concentração do I-131.

11 Radioatividade Aplicações da radiação APLICAÇÕES EM MEDICINA Radioterapia - Tratamento com fontes de irradiação. - Cobalto-60 (antes Césio-137): maior rendimento terapêutico. - Fonte é deslocada de dentro do cabeçote (Pb e aço inox), posição segura para a frente de um orifício, que permite a passagem de um feixe de radiação concentrado sobre a região a ser tratada. OBS.: outros radioisótopos utilizados: - Tecnécio (Tc-99): 6 h de meia-vida – cintilografias de rins, cérebro, pulmões, ossos. - Samário (Sm-153): 1,9 dias de meia-vida – injetado em pacientes com metástase óssea, como paliativo para a dor.

12 Radioatividade Aplicações da radiação APLICAÇÕES EM AGRICULTURA Acompanhamento do metabolismo das plantas - Planta absorve um traçador radioativo. - Coloca-se um filme sobre a região radioativa e revela-o. - Observa-se o que é preciso para elas crescerem, o que foi absorvido pelas raízes e folhas.

13 Radioatividade Aplicações da radiação CONSERVAÇÃO DE ALIMENTOS Exposição do alimento, embalado ou não, à radiação ionizante (radiação gama, raios-x ou feixe de elétrons). - Duas grandes vantagens podem ser destacadas: não altera a qualidade do alimento e não deixa resíduos tóxicos. - processo é realizado em uma instalação radiativa denominada Irradiador de Grande Porte, utilizando, na maioria dos casos, uma fonte de Co-60.

14 Radioatividade Aplicações da radiação DATAÇÃO DE FÓSSEIS Utilizado em arqueologia, envolve C-14 e K Carbono-14: todos os organismos são formados por carbono. - uma pequena quantidade de C-14 é constantemente absorvida; - organismos emitem CO 2 com C-14, na mesma proporção. - este equilíbrio garante a constância de C-14 no organismo. - Morte: organismo pára de absorver C-14, só emite. - Meia-vida C-14: anos

15 Radioatividade F issão Núcleo é bombardeado com uma partícula acelerada e este se quebra em núcleos menores, mais estáveis, liberando energia. - Bomba atômica: Hiroshima e Nagasaki

16 Bomba atômica Radioatividade O dispositivo atômico sendo posicionado para o primeiro teste nuclear em Alamogordo, Novo México, Coronel Paul W. Tibbets Junior, piloto do Enola Gay, o avião que soltou a bomba atômica em Hiroshima, acenando da cabine antes da decolagem. Little Boy, a bomba que foi lançada sobre Hiroshima, provocando a destruição da cidade, em agosto de Kg U-235, Kg; 3 m comprimento, 71 cm diâmetro; Devastação total raio 3 Km; Energia liberada = 15 mil ton. TNT

17 Bomba atômica Radioatividade Vítima da explosão atômica em Nagasaki, Uma densa coluna de fumaça elevando-se a mais de 60 mil pés de altitude sobre o porto japonês de Nagasaki (3 dias depois). Era a segunda vez que se utilizava uma bomba atômica (fet man) durante a 2ª Guerra Mundial.

18 Radioatividade Combustíveis x Geração de energia

19 Radioatividade F usão Síntese (união) de núcleos formando um núcleo maior e mais estável, liberando muito mais energia. São necessárias elevadas temperaturas ( °C). - Bomba de Hidrogênio

20 Radioatividade Contaminação e irradiação * Contaminação - Presença indesejável de um material em determinado local, onde não deveria estar. * Irradiação - Exposição de um objeto ou de um corpo à irradiação, sem que haja contato direto com a fonte de radiação.

21 Radioatividade Efeitos biológicos da radiação A curto prazo ou agudos A longo prazo ou tardios náuseas vômito perda de apetite perda de peso febre hemorragias dispersas queda de cabelo forte diarréia morte genéticos (mutações nas células reprodutoras) somáticos (aumento na incidência do câncer, anormalidade no desenvolvimento do embrião)

22 Radioatividade Reação em cadeia Em 2 de dezembro de 1942, o prêmio Nobel Enrico Fermi, físico ítalo- americano, foi o primeiro a conseguir uma reação em cadeia controlada da fissão nuclear e integrou o grupo que pesquisou sobre a bomba atômica.

23 Radioatividade Reator Nuclear

24 Radioatividade Reator Nuclear - Realização de testes na parte elétrica. - Desligou-se o sistema automático de segurança. - Engenheiros elétricos perderam o controle da operação. - Temperatura aumentou rapidamente; - Não houve água suficiente para refrigeração; - Água foi transformada em vapor, este deslocou a tampa de concreto e destruiu o prédio, deixando o reator aberto para o meio ambiente. - O grafite aquecido entra em combustão espontânea, gerando um grande incêndio.

25 Radioatividade 26 de abril de 1986

26

27

28 Radioatividade Contaminou solo e água de km 2. Inutilizou 114 mil hectares de terra. Inutilizou 492 mil hectares de floresta. Forçou cerca de 400 mil pessoas a abandonarem suas casas. Provocou a morte de 59 pessoas. Libertou radiação duzentas vezes superior às bombas atômicas de Hiroshima e Nagasaki.

29

30 Radioatividade Passados 25 anos sobre Chernobyl, ainda não há consenso sobre o número de vítimas. Segundo a Organização das Nações Unidas, apenas 59 pessoas morreram devido ao acidente e estima-se em 4 mil o número dos que podem vir a perder a vida devido a cancros. Por sua vez a organização não governamental, Greenpeace, garante que o acidente causou, nos países mais afetados, a Ucrânia, a Rússia, e a Bielorússia, cerca de 200 mil mortos.

31 Radioatividade 13 de Setembro de 1987

32

33 Radioatividade Equipamento radioterapêutico Cloreto de césio ( 137 Cs) Início de funcionamento em 1971 Desativação em 1985 Demolição de parte das edificações da clínica O restante em forma de ruínas

34 Radioatividade Equipamento levado para um ferro-velho Cápsula aberta 19,26g de cloreto de césio-137 (CsCl) Brilho azulado no escuro Higroscópico, adere à roupa, pele, utensílios e alimentos

35 Radioatividade Algumas horas após a exposição: Náuseas Tonturas Vômitos Diarréias

36 Radioatividade Drogarias Postos de saúde Hospitais

37 Radioatividade 29 de setembro de 1987 Foi dado o alerta de contaminação por material radioativo de milhares de pessoas 16 dias após o início da contaminação.

38 Radioatividade A Comissão Nacional de Energia Nuclear (CNEN) mandou examinar toda a população da região pessoas foram expostas aos efeitos do césio, muitas com contaminação corporal externa revertida a tempo. 129 pessoas apresentaram contaminação corporal interna e externa concreta, vindo a desenvolver sintomas e foram apenas medicadas. 49 foram internadas, sendo que 21 precisaram sofrer tratamento intensivo; destas, quatro não resistiram e acabaram morrendo.

39

40

41 Radioatividade 11 de Março de 2011

42

43 Radioatividade Formou-se um tsunami devido ao epicentro do tremor ter sido no oceano Pior conseqüência foi o acidente nuclear de Fukushima Falta de energia impediu o resfriamento do gerador Os nêutrons produzidos nas reações continuam tendo alta energia, devido à alta temperatura

44 Ilustração do estado dos quatro reatores afetados no acidente nuclear de Fukushima, no Japão. Dois deles mostram danos nítidos em suas contenções secundárias. (Wikimedia Commons/ Sodacan – CC BY 3.0)

45

46


Carregar ppt "Considerações iniciais * Rutherford (Prêmio Nobel de Química – 1908) Radioatividade * Bohr (Prêmio Nobel de Física – 1922) * Chadwick (descobriu o NÊUTRON."

Apresentações semelhantes


Anúncios Google