A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 NOTA DO AUTOR: Ao elaborar esta aula, não tive a intenção de ensinar a dividir, quis apenas elaborar um método para facilitar a vida dos alunos durante.

Apresentações semelhantes


Apresentação em tema: "1 NOTA DO AUTOR: Ao elaborar esta aula, não tive a intenção de ensinar a dividir, quis apenas elaborar um método para facilitar a vida dos alunos durante."— Transcrição da apresentação:

1

2 1 NOTA DO AUTOR: Ao elaborar esta aula, não tive a intenção de ensinar a dividir, quis apenas elaborar um método para facilitar a vida dos alunos durante o processo da divisão, com a criação de nomes para as diversas situações ao qual podem se encontrar.. Algoritmo Nomenclatura utilizada: Onde A: Dividendo, B: Divisor, C: Quociente, D: Resto. Nomenclatura criada para facilitar o processo: 1) Primeiro zero criado: É usado quando não se possui mais número no dividendo para abaixar no resto, dando continuidade à divisão.É também usado quando o dividendo for menor que o divisor, desta forma, cria-se o 1º zero criado. Obs: Depois de criado, transforma-se imediatamente em vírgula no quociente. 2) Zero Continuidade: Usado após o 1º zero criado, e tem a finalidade de apenas dar continuidade à divisão, nunca é criado em seqüência. Obs: Não vai para o quociente. 3) Zero Seqüência: É usado em seqüência ao 1º zero criado ou em seqüência ao zero continuidade. Obs: Todos os zeros seqüência vão para o quociente. 4) Zero Igualar Casas Decimais: É usado apenas a fim de igualar as casas decimais entre o dividendo e o divisor, para que desta forma possamos começar a efetuar a divisão, pois esta operação de igualar as casas decimais só se dá no início da divisão. Obs: Não vai para o quociente. 5) Ao abaixar do dividendo um número, deve-se tentar dar continuidade a conta, se não for possível, ou seja, divisor menor que o resto, coloca-se imediatamente zero no quociente e abaixa outro número, se ainda não conseguir efetuar a divisão, coloca-se novamente zero no quociente e abaixa outro número do quociente, até conseguir efetuar a divisão, ou seja, divisor ficar maior que o resto. A B CD

3 2 5 0,2 2-4 1 -10 0 a) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 ( 5 0 0 Zero igualar casas decimais item 4 Abaixo, seguem exemplos de como utilizar o algoritmo da divisão.Veja bem cada situação problema,e que tipo de zero você usaria, para a resolução da conta,sempre que preciso consulte a tabela ao lado.

4 3 l800072 2 -4 0 32 b) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 4 ( 0007 00018 0 32 -8 Observe, que a cada número que abaixei do dividendo, com exceção do 7, não dava para continuar a conta,por isso registramos esta não continuidade através de zeros no quociente, até conseguir terminar a conta (item 5).

5 4 174 3000 0,0, 5-1500 2400 8 -2400 0 c) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 Zero continuidade 1º Zero Criado (

6 5 1º Zero criado Item (1) Números abaixados do dividendo (Item 5). 300003522 5 35 d) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 600 000 ( 0,000-3000000 22000 5220000 -4800000 4200000 4200000- 0 587 Zeros criados em seqüência, após o 1º zero criado (item 3) Zero continuidade (item 2)

7 6 53 5,1-5 0 e) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 ( 06 30 -30 0

8 7 5 3,1-3 2 -18 2 f) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 6 0 0 6... -18 2 ( Dízima Periódica Que tipo de Zero você utilizaria agora?

9 8 8 5,1-5 3 -30 0 g) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 ( 6 0

10 9 576 50,1-50 7 26 h) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 ( 152 6 0 -250 100 -100 0 Que tipo de Zero você utilizaria agora?

11 10 l6000024 2 0 -24000 0 i) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 3000 ( 0240 00008-6000 00 0, Que tipo de Zero você utilizaria agora?

12 11 l500291 10000 1 41000 29 j) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 50 000 ( 00058-50000 0100 0 -250000 -400000 0 -100000 0,2 Que tipo de Zero você utilizaria agora?

13 12 25 480 0,0,5-240 100 2 -96 4 l) L E G E N D A * 1º Zero criado * Zero Continuidade * Zero seqüência * Zero Igualar casas decimais * Situação número 5 00 0833... -384 16 0 -144 16 0 -144 16 ( Observe que o 2º Zero é o Zero Seqüência, que foi criado, após o Zero Continuidade. Que tipo de Zero você utilizaria agora?

14 13 Explicando os passos da divisão. Situação problema: A turma da fábrica fez um bolão para os jogos do Campeonato Brasileiro de Futebol 2003.Houve 60 ganhadores do prêmio de R$ 6 192,00.Qual é a parte para cada ganhador? 6 192 60 ( 1- 6 0 19 0 2 3 - 180 12 Terminei de dividir a parte inteira do número, cheguei no resto.O que significa que 60 x 103 + 12 = 6 192. Para continuar a divisão temos a necessidade de subdividir o resto,ou seja dividir R$ 12,00 para 60 pessoas, o que dá 0,20 centavos para cada uma.Veja que 60 x 0,20 = 12,00. Primeiro Zero Criado.

15 14 Observe que podemos explicar o resultado através de frações equivalentes, utilizando o resto e o divisor. 12 60 ÷ ÷ 6 6 2 10 ==0,2 Veja que : 103+ 0,2 = 103,2 Vinte centavos para cada ganhador. Valor total pago a cada ganhador. 6 192 60 ( 1- 6 0 19 0 2 3 - 180 12 0,2 - 120 0 Note que é o primeiro zero criado.Logo sua função é a de quebrar o quociente (vírgula colocada), para que a conta continue, pois o resto é menor que o divisor,mas com a criação do primeiro zero criado,o resto passa a ser maior que o divisor,permitindo desta forma a operação ininterruptamente, ou seja, sem separar a parte inteira da fracionada ( resto ÷ divisor ) que vimos a separação acima.Ou seja fazemos toda a divisão de uma vez só.

16 15 Veja mais um exemplo do Primeiro Zero Criado. 645 ( 1 - 5 14 2 - 10 4 Resto Divisor = 4545 X 2 = 8 10 =0,8 Parte inteira.Parte Fracionada Somando as duas partes temos: 12 + 0,8 = 12,8. 645 ( 1 - 5 14 2 - 10 40,8 - 40 0 Observe que o primeiro zero criado, funciona como elo de ligação entre a parte inteira e a fracionária.

17 16 6 192 60 ( 1- 6 0 19 0 2 3 - 180 12 0,2 - 120 Note que ao abaixarmos o nove do dividendo, ficou 19 ÷ 60, ou seja não dá para dividir uma dezena e nove unidades por seis dezenas, se preferir usar a frase:não dá para dividir, pois o resto é menor que o divisor.É por causa dessa situação, a de não conseguir efetuar a divisão, que registramos o zero no quociente, afinal se não fiz nada registro o zero no quociente para indicar justamente isso.Abaixamos o 2 para a situação ficar 192 ÷ 60, e assim efetuar a divisão. Situação nº 5. = 1 10 =0,1 Lê-se : Um décimo. Numerador ou dividendo tem o mesmo significado. Denominador ou divisor tem o mesmo significado. Zero Seqüência 0 ----------------------------------------------------------------------------------------

18 17 = 1 100 =0,01 Lê-se :( Um centésimo) = 2 100 =0,02 Lê-se : (Dois centésimos) Acompanhe estas seqüências.

19 18 40000 10000 = 4 a) b) 40000 1000 = 40 Dividendo Divisor Quociente c) 40000 100 = 400 d) 40000 10 = 4000 Observe que a medida em que diminuímos o divisor, aumentamos o quociente. ou A medida que aumentamos o divisor diminuímos o quociente. a) ------------------------------------------------------------------------------------------ 40000 10000 = 4 Dividendo Divisor Quociente 4000 10000 b) = 4 10 = 4 x 10 0 10 1 = 4 x 10 -1 = 0,4 c) 400 10000 = 0,04 d) 40 10000 = 0,004 Observe que a medida em que diminuímos o dividendo, diminuímos o quociente ( andando casas decimais para trás). Ou podemos pensar que, a medida que aumentamos o dividendo, aumentamos o quociente ( andando casas decimais para frente),isso explica Zero Seqüência,como veremos adiante.

20 19 Terminamos de explicar Zero Seqüência assim: 4100 unidadedécimo unidade centésimo 0,00 0 4-400 0 dezena unidadedécimo centésimo milésimo 1510000,0 0 0 ( 1000 5000 5 -5000 0 décimo centésimo milésimo unidade b) a) Observe que preciso igualar as casas do dividendo com o quociente, a medida que vou efetuando a conta de divisão, e quando eu termino a conta, as casas se finalizam,ou seja, centésimo com centésimo, milésimo com milésimo, etc.E sempre fazendo caber o divisor no dividendo( criando o primeiro Zero Criado, e se preciso, criando o Zero Seqüência), ou o divisor no resto, á propósito, fazer caber o divisor no resto é criar o Zero Continuidade.

21 20 40010000 ( 0 0,0, 0 04 - 40000 0 O primeiro zero criado o vermelho,separa a parte inteira da decimal, e este zero de cor laranja, é criado em seqüência ao primeiro zero criado, e sua função é a de permitir que a divisão continue,pois o dividendo sem este zero denominado seqüência,ainda fica menor que o divisor,o que impossibilita a continuação da divisão,é por isso que é necessária a criação deste ZERO SEQUÊNCIA.Veremos em outros exemplos mais adiante que todo zero criado em seqüência a outro zero como exemplo o zero continuidade ou o primeiro zero criado, levará o nome de Zero Seqüência. Veja mais um exemplo. 4100000 0,0, 0 0 0 0 0 0 ( 4 - 40000 0 = 4 10000 = 0,0004

22 21 Vamos dar uns exemplos práticos. a) Tenho 1,8 litros de uma substância para serem distribuídos em frascos que cabem no máximo 0,06 litros.Quantos frascos eu precisarei? 1,8 0,06 = 18 10 6 100 extremos meios = 1800 60 Possuem o mesmo valor. = 30 Observe que igualamos as casas decimais, apenas para efetuarmos a divisão, pois precisávamos que o dividendo ficasse maior que o divisor, porém veja que não houve alteração nenhuma no que era e no que transformamos. Zero Igualar Casas Decimais. = x x 10 18 100 =0,18 Observe que tive de transformar o dividendo em número Natural para começar a divisão,já que o divisor já era um número Natural.E também que não alterei a fração para fazer isso, pois é fração equivalente. 1,8 10 b)

23 22 c) Clóvis possui no bolso R$ 6,00 para tirar cópias de algumas folhas do livro de História, porém cada cópia colorida custa R$ 0,75.Quantas cópias dá para ele tirar? 6 0,75 = 6 1 75 100 = 600 75 =8 ---------------------------------------------------------------------------------------- 60,7500 Possuímos duas casas depois da vírgula no divisor,logo preciso de dois zeros no dividendo para igualar as casas decimais. = 60075 ( 8 - 600 0 1,80,060 Como já possuíamos uma casa depois da vírgula no dividendo e duas no divisor,é só regularizar o dividendo com uma casa decimal, ou seja, um ZERO IGUALAR CASAS DECIMAIS. = 1806 ( 3 - 18 00 0

24 23 Explicando Zero Continuidade. 4 5 1 - 4 1 unidadedécimo centésimo unidade décimo centésimo 0,2 - 08 20 5 - 20 0 Observe que estou dividindo o resto da unidade, e essas divisões é onde se usa o Zero Continuidade, por isso é que é usado depois do Primeiro Zero Criado, pois sua função é a subdivisão da unidade em décimos,centésimos,etc.Vale lembrar que nosso sistema de numeração é decimal,por isso abaixamos zero no resto.E que 2 décimos é a mesma coisa que 20 centésimos. 2 10 = 20 100 10 x x Dois décimos é igual a vinte centésimos é isso que nós fazemos ao criar um zero do nada,estamos apenas escrevendo de maneira diferente a mesma fração.

25 24 Conclusão Geral : Primeiro Zero criado:É usado para transformar a parte inteira do resto ou do dividendo ( se for no começo da divisão ), em décimos,centésimos,etc. Zero Continuidade: É usado para transformar décimos em centésimos, centésimos em milésimos,etc. Para dar continuidade na conta, lembre-se que, por exemplo: seis décimos é a mesma coisa que sessenta centésimos. Zero Seqüência: É usado para igualar as casas decimais ( da parte não inteira ) entre o dividendo e o quociente durante a divisão. Zero Igualar Casas Decimais: É usado para igualar as casas decimais entre o dividendo e o divisor, para transforma-los em números Naturais, e isso ocorre apenas ao iniciar a divisão ( se for preciso ). Situação número 5: É usado durante a divisão,quando estamos abaixando números do dividendo no resto e não conseguimos dar andamento na divisão pois o resto ainda fica menor que o divisor e desta forma temos que novamente abaixar outro número,porém como não conseguimos efetuar a divisão, registramos essa não continuidade com zero no quociente.


Carregar ppt "1 NOTA DO AUTOR: Ao elaborar esta aula, não tive a intenção de ensinar a dividir, quis apenas elaborar um método para facilitar a vida dos alunos durante."

Apresentações semelhantes


Anúncios Google