A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Ressonância Paramagnética Eletrônica RPE Prof. Claudio José Magon.

Apresentações semelhantes


Apresentação em tema: "Ressonância Paramagnética Eletrônica RPE Prof. Claudio José Magon."— Transcrição da apresentação:

1 Ressonância Paramagnética Eletrônica RPE Prof. Claudio José Magon

2 Condutividade ac Ressonância Magnética

3 =Susceptibilidade Magnética = - i =Fator de Preenchimento da bobina L 0 =Indutância da bobina vazia Potência dissipada no resistor equivalente: No futuro veremos que se H 1 é pequeno, basta medir, pois: e estão relacionados entre si pelas Relações de Kramers-Kronig

4 Como medir ? Entretanto, a prática diz que esta técnica é muito pouco sensível, principalmente porque: L 0 L, R

5 Uma modificação interessante acrescentar um capacitor tal que Quando isto acontece, o capacitor mata o indutor o circuito fica assim: L, R : mesma ordem de grandeza

6 E daí, é só isso? Infelizmente não! A prática diz que o experimento fica interessante quando: / Hz = 1 GHz Problema Em altas frequências os fios do circuito não se comportam mais como fios. Fios se comportam como linhas de transmissão. Isto acontece porque o comprimento de onda associado a : se torna comparável ao comprimento dos fios, por exemplo:

7 Os fios se tornam cabos coaxiais com impedância característica Z o Para que não haja reflexões nas terminações, é necessário casar as impedâncias Uma forma prática de fazer isto é a seguinte:

8 E daí, é só isso? Infelizmente não! Como se constroi um circuito ressonante para 10 GHz ? Diminuir L o Diminuir número de espiras Diminuir C Afastar as placas E ainda não é suficiente ! ! !

9 Este é o desenho prático de uma Cavidade de Microondas (uma caixinha condutora com um furinho)

10 A cavidade de microondas BandaFrequência (GHz) H 0 (para g = 2) X cm3400 Gauss Q358.5 mm12500 G K231.3 cm8200 G L cm540 G S2 – 410 cm1070 G W cm33940 G

11 Da mesma forma, os fios se tornam guias de onda O desenho esquemático de uma ponte de microondas é o seguinte: Os circuladores, acopladores direcionais, etc, fazem a mágica de direcionar a microondas através dos diferentes componentes. As pontes verdadeiras, modernas, utilizam este mesmo princípio, mas são mais completas e mais complexas.

12 Espectrômetro de RPE

13 Espectrômetro RPE cw Varian adquirido em 1980 Espectrômetro RPE pulsado Bruker adquirido em 2000 IFSC – Grupo de Biofísica

14 O gerador de microondas: Reflex klystron

15

16 Um conceito importante: a teoria da Resposta Linear A magnetização da amostra é a resposta ao campo de excitação Parte imaginária Absorção (ou componente em quadratura) Parte real Dispersão (ou componente em fase)

17 Um exemplo conhecido: o oscilador harmônico TF

18 O elétron é simplesmente um dipolo magnético ! ! ! Energia clássica de um dipolo em um campo magnético O atores principais desta aula são os ELÉTRONS que se ligam formando os átomos, moléculas, … e a matéria Em muitas situações, podemos assumir simplesmente que:

19 O efeito Zeeman normal

20 A dependência da energia das transições eletrônicas com um campo magnético aplicado revela a existência do SPIN ELETRÔNICO também denominado de momento angular intrínsico do elétron. O efeito Zeeman anômalo

21 Uma visão quântica simples – spin S = 1/2

22 O spin em um campo magnético: visão clássica g = 2 B = erg Gauss -1 h = erg seg o = 8.4 GHz B o = 3000 Gauss = Momento Angular

23 Um pequeno excesso de spins se orientam no sentido oposto ao campo aplicado Termalização dos spins no banho térmico

24 Somente se manifesta na presença de um campo externo. Somente é observado em átomos, moléculas com spins desemparelhados. A orientação de cada momento é perturbada pelo efeito térmico. Alinhamento parcial é induzido pelo campo aplicado. Paramagnetismo ideal é caracterizado por uma susceptibilidade de Curie. Paramagnetismo M : momento magnético / unidade de volume H o : intensidade do campo macroscópico aplicado o : susceptibilidade por unidade de volume

25 Na maioria dos experimentos de ressonância magnética um campo magnético estático é aplicado (em adição ao campo de radiação eletromagnética), a fim de promover o alinhamento dos spins e desdobrar os níveis de energia, possibilitando assim a absorção e emissão de um quantum da radiação eletromagnética: um fenômeno conhecido por RESSONÂNCIA do spin eletrônico.

26 Por isso, quando falarmos Sistema ou Amostra queremos dizer: Amostra + Cavidade + Campo Magnético Estático Este é o experimento que dá certo. Pois, a amostra somente absorve a radiação na presença de um campo magnético aplicado. Condições Básicas para o EPR: 1.Campo magnético 2.Radiação monocromática 3.Amostra com spins desemparelhados

27 Técnica de Onda Contínua : CW

28 Técnica Pulsada

29 E daí, é só isso? Infelizmente não! Os engenheiros dizem que: Variar a frequência da microoonda, mantendo a mesma sensibilidade, com a cavidade sintonizada e acoplada: NEM PENSAR ! ! ! Solução: Fazer o que? Nesta parte são os engenheiros que dão as ordens. O único jeito é dar um jeito. Se é para o bem de todos: manteremos a frequência fixa, mas, VAMOS VARIAR O CAMPO MAGNÉTICO (lentamente)

30

31 CW utiliza amplificação sensível à fase do sinal: Amplificador Lock-in E daí, é só isso? Infelizmente não!

32 Devido às baixas energias envolvidas: 1.Diferença entre as populações (N + -N - ) é muito pequena. 2.Radiações não são ionizantes. 3.Os spins nucleares ou eletrônicos podem ser usados como probes que não perturbam a amostra. Energias envolvidas

33 Parâmetros característicos do espectro de RPE fator-g acoplamentos hiperfinos formas de linha Intensidades Tempos de relaxação

34

35

36 Outro tipo de Magnetismo: Diamagnetismo M : momento magnético / unidade de volume B : intensidade do campo macroscópico aplicado : susceptibilidade por unidade de volume Somente se manifesta na presença de um campo externo. Diamagnetismo é comum a quase todos os materiais mas é normalmente pequeno comparado com outros tipos de magnetismo. Sua origem é orbital (blindagem): NÃO PRECISA DO SPIN DO ELÉTRON! É caracterizado por uma susceptibilidade magnética negativa e independente da temperatura.

37 Alguns tipos de magnetismo Ferromagnetismo Antiferromagnetismo Apresentam magnetização espontânea (M existe mesmo na ausência de H o )

38 Os elétrons interagem não somente com o núcleo mas também entre si, e consigo mesmo (interação spin-órbita) É difícil calcular a função de onda. Configuração eletrônica: Como os elétrons preenchem as camadas? Como encontrar o estado fundamental? O átomo tem muitos elétrons

39 Interação Spin-Órbita Interação entre o spin do elétron e o momento magnético de sua órbita.

40 O princípio de exclusão de Pauli requer que somente um elétron possa estar em um dado estado, (n,l,m l,m s ). Este princípio se aplica para fermions (próximo slide). No estado fundamental dos átomos, elétrons ocupam os estados de mais baixa energia, disponíveis e consistentes com o princípio de exclusão. O princípio de exclusão de Pauli

41 Partículas com spin semi-inteiro são chamadas de Partículas de Fermi ou Fermions (protons, elétrons e neutrons) Suas funções de onda são antissimétricas com relação à troca pares de partículas: Partículas com spin inteiro (ou nulo) são chamadas de Partículas de Bose ou Bosons (fotons, partícula α, atomos de Hélio). Suas funções de onda são simétricas com relação à troca pares de partículas: Fermions e Bosons

42 Configuração eletrônica Duas regras básicas determinam a estrutura eletrônica de um átomo de muitos elétrons. – O sistema de partículas é estável se a energia total é mínima. – Somente um elétron pode existir em qualquer estado quântico. Camadas atômicas com números quânticos principais, n, são denotados por letras maiúsculas: n=1 (K), n=2 (L), n=3 (M), n=4 (N), n=5 (O), Cada sub-camada é identificada pelo seu número quântico principal, n, seguido da letra correspondente ao número quântico orbital, l, denotado por s, p, d, f, g, h …

43 Cada camada pode conter, no máximo, 2(2l+1) elétrons, s(2), p(6), d(10)… O índice acima da letra, à direita, indica o número de elétrons em cada sub-camada. Por exemplo, a configuração do sódio é expressa por: 1s 2 2s 2 2p 6 3s 1. O número máximo de elétrons em uma camada é igual ao número de elétrons em todas suas sub-camadas fechadas. Por exemplo, na camada n é igual a 2n 2 : n=1 (2), n=2(8), n=3(18)… Para uma dada configuração: Como se determinam os estados atômicos e o estado fundamental? O estado do átomo

44 Cada elétron no átomo tem um certo momento angular orbital L e um certo momento angular de spin S. Ambos contribuem para o momento angular total J do átomo. Como? Em termos da soma de momentos angulares existe diversas maneiras de se obter o momento angular total. As duas principais são: Acoplamento LS e Acoplamento JJ. O momento angular total

45 Acoplamento LS Quando o acoplamento spin-órbita em um elétron individual é menor do que as interações eletrostáticas elétron-eletron, o acoplamento LS se aplica. O momento angular orbital individual, L i dos diversos elétrons se acoplam em um único resultante L. Assim também acontece com os momentos S i em um resultante S. Quando a interação spin-orbita atua, L e S interagem magneticamente para formar o momento angular total:

46 Por examplo, 2 P 3/2 S = 1/2, L = 1, J = 3/2. O estado do átomo, sob acoplamento LS

47 Quando as interações spin-órbita individuais são mais fortes do que as interações eletrostáticas mútuas o acoplamento J se aplica. Cada elétron tem um momento angular J i resultante da soma vetorial de L i e S i. Daí, os J i se combinam para formar o momento angular total do átomo, J. Acoplamento JJ

48 Problema: Encontrar os valores possíveis do momento angular total, sob acoplamento LS, de dois elétrons cujos números quânticos orbitais são l 1 =1 and l 2 =2. Solução: Existem três maneiras de se combinar L 1 e L 2 em um único vetor L:L = 3, 2, 1. Da mesma maneira, existem duas maneiras de se combinar S 1 e S 2, S = 1, 0. Como mostra a tabela, os 5 valores possíveis de J são: J = 0, 1, 2, 3, 4. Exemplo S L321 14,3,23,2,12,1,0 0321

49 As regras de Hund determinam o estado fundamental do átomo: Para uma dada configuração eletrônica, o estado com maior multiplicidade (2S+1) tem a energia mais baixa. Para uma dada multiplicidade, (S), o estado com maior valor de L tem energia mais baixa. Para elétrons equivalentes, os estados com menor valor de J tem a energia mais baixa em multipletos normais, (valendo a reversa). Normal significa que as sub-camadas estão menos que a metade cheias. As regras de Hund

50 Problem: A configuração de um átomo é 1s 2 2s 2 2p 3. Solução: L 1 = 1, L 2 = 1 L = 2, 1, 0. S 1 = 1/2, S 2 = 1/2 S = 1, 0. 3 D 3, 3 D 2, 3 D 1, 1 D 2, 3 P 2, 3 P 1, 3 P 0, 1 P 1, 3 S 1, 1 S 0 Princípio de exclusão proíbe D 3 P 2, 3 P 1, 3 P 0, 1 P 1, 3 S 1, 1 S 0 Maior multiplicidade 3 P, 3 S Maior L 3 P Camada menos da metade cheia 3 P 0 Exemplo

51 Estado fundamental dos íons d n Os valores de L e S são os mesmos para d n e d n-10. Os estados excitados, normalmente, não estão populados. A degenerescência do estado fundamental é removida pelo campo elétrico dos ligantes.

52 Eletrons d 1

53

54 Hamiltoniano de spin Para o caso do acoplamento LS, a teoria preve que o estado fundamental do íon, na presença do campo cristalino e do campo externo, B, pode ser descrita por um Hamiltoniano efetivo: matriz g caracterizada por g x, g y, g z matriz de campo nulo caracterizada por D x, D y, D z G : estado fundamental de energia E G n : estados excitados de energia E n O primeiro termo de H é a interação Zeeman efetiva. O segundo termo de H é chamado de termo de campo nulo

55 O parâmetro de campo cristalino Aplicando-se a teoria do hamiltoniano de spin para o caso do íon d 1 em um campo octaédrico, obtem-se: Portanto, a medida experimental do tensor g permite o cálculo de e.

56 Simetria: tetraedro comprimido

57 Ni 2+ no cristal cúbico MgO O Ni 2+ é um íon 3d 8. O campo magnético desdobra o estado fundamental 3 A 1g (S=1) nos níveis de spin m S = 1, 0,-1. A linha larga do espectro se deve à superposição das transições |-1 |0 e |0 |+1. A linha fina é devida a transição |-1 |+1 efetuada pela absorção simultânea de dois quanta (double quantum transitions) em potência de microonda alta.

58

59 Simetria axial (g x = g y ) Simetria rômbica (g x g y g z ) Espectro de pó

60 A interação hiperfina

61 Spins nucleares

62 Um caso comum: fator-g anisotrópico + interação hiperfina 1 – Interação Zeeman eletrônica 2 – Termo de campo zero do elétron 3 – Interação Zeeman nuclear 4 – Interação hiperfina elétron-núcleo

63 Anisotropia da interação hiperfina A Anisotropia de A vem da interação dipolar magnética entre S e I tensor A é caracterizado por 3 valores principais: A xx, A yy, A zz Simetria axial: A xx = A yy A xx ( A // e A )

64 Campbell & Dwek, Biological Spectroscopy Exemplos de espectros hiperfinos I - espectro de três linhas resultante da interação de um eletron desemparelhado com o spin nuclear 14 N (I = 1). Se observam também os pequenos satelites causados pelo 13 C (I = ½, abundância 1.1%) dos grupos CH 3 adjacentes ao NO II - espectro de seis linhas resultantes do spin nuclear I = 5/2 do 55 Mn III - espectro do radical benzoquinone. O eletron delocalizado interage com 4 protons equivalentes, dando as 5 linhas. IV – o espectro de 4 linhas, intensidades 1 : 3 : 3 : 1 resulta da interação dos três protons equivalentes (n = 3) do CH 3. O desdobramento do grupo OH não é observado

65 Cu(II) solução Lectina Mn(II) SL em DPPC/DLPC Espectros de RPE: Assinatura dos radicais

66 Movimento: escala de Tempo em RPE Um marcador de spin é um radical que interage com um biopolímero. O seu espectro reflete as propriedades dinâmicas do biopolímero. Marcadores de spin de nitróxido (estáveis até 80 o C e pH de 3 a 10) tem sido utilizados para estudar a dinâmica de membranas biológicas e de cadeias poliméricas. O marcador pode ser ligado um grupo funcional específico da macromolécula

67 Drago, Physical Methods for Chemists O zero field splitting produz tres estados de spin duplamente degenerados, m S = 5/2, 3/2 e ½ Cada um deles desdobra em dois singletos pela aplicação do campo magnético, produzindo seis níveis. Como resultado, esperam-se cinco transições: -5/2 -3/2, -3/2 -1/2 … As linhas são desdobradas ainda pela interação hiperfina do 55 Mn EPR MgV 2 O 6 dopado com Mn 2+

68 Drago, Physical Methods for Chemists Espectros hiperfinos: 63 Cu 2+ em bis-salicylaldimine Um espectro com 4 grupos de linhas resulta da interaçào do spin eletrônico com o spin nuclear do 63 Cu (I = 3/2). A estrutura hiperfina em cada grupo consiste de 11 linhas de intensidades relativas 1:2:3:4:5:6:5:4:3:2:1. Estas linhas resultam do desdobramento por dois nitrogênio e dois hidrogênios, dando um total de: (2n n I N +1)(2n H I H +1) = 15 linhas A superposição de algumas destas linhas explica porque se observam 11 no lugar de 15 linhas no espectro

69 Exemplos de espectros hiperfinos: Mn 2+ em Na : -alumina O espectro mostra 6 linhas, separadas 83 G, centradas em g = 2.0 A estrutura hiperfina resulta da interaçào do spin eletrônico com o spin nuclear do 55 Mn (I = 5/2). As seis linhas correspondem as transições permitidas de acordo as regras de seleção M S = 1 e M I = 0. Os dubletes fracos entre as linhas resultam das transições proibidas M I = 1. O estudo de RPE mostrou que quando o Mn 2+ é introduzido durante o crescimento do cristal, ele fica confinado no bloco spinel da estrutura (MnAl 2 O 4 ) de forma que a simetria do sítio ocupado pelo íon Mn 2+ é tetraédrica. Espectro obtido a T ambiente, banda X, e com o eixo c do cristal orientado com o campo magnético externo. Ref: Barklie & ODonnel J. Physics C 10, 4127, 1977

70 Seidel & Wolf in Physics of Color Centers (Ed: Fowler) RPE em centros de cor Espectro de EPR de um centro U 2 em KCl. O centro consiste em hidrogênio num sítio interticial da rede. O espectro mostra dois grupos de linhas separadas por 500 G, cada grupo desdobrado em 13 linhas separadas por = 8.9 G. Com B 0 na direção [110] o desdobramento é de 19 linhas com separação (2/3), e com B 0 em [111] aparecem 16 linhas com separação (4/5) O espectro foi medido a 77 K, banda X (9.38 MHz) com a direção [100] do cristal orientado na direção do campo externo B 0

71 Seidel & Wolf in Physics of Color Centers Ed: Fowler Desdobramento hiperfino: = 8.9 G em KCl, = 47.5 em KBr = 15.9 em NaCl A estrutura superhipefina resulta da interação com 4 núcleos (I = 3/2) dos íon halogenos 1 os vizinhos, os quais formam um tetraedro regular. A interação HFS dos íons K é menor que as dos Cl vizinhos, mas a segunda camada de núcleos K mostra uma HDS maior.


Carregar ppt "Ressonância Paramagnética Eletrônica RPE Prof. Claudio José Magon."

Apresentações semelhantes


Anúncios Google