A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Didática e a conversão do saber científico em saber de ensino: um exercício metodológico com o saber matemático. Denis da Silva Monteiro Jeferson Gomes.

Apresentações semelhantes


Apresentação em tema: "Didática e a conversão do saber científico em saber de ensino: um exercício metodológico com o saber matemático. Denis da Silva Monteiro Jeferson Gomes."— Transcrição da apresentação:

1 Didática e a conversão do saber científico em saber de ensino: um exercício metodológico com o saber matemático. Denis da Silva Monteiro Jeferson Gomes Moriel Junior Livia Carolina Miranda Faria INICIAR UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO SITE DE DIDÁTICA: O ENSINO EM QUESTÃO Projeto do Núcleo de Ensino Coordenadora Maria Eliza Brefere Arnoni

2 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Introdução O saber científico, produzido em instâncias universitárias e institucionais de pesquisa, é vinculado à área acadêmica e veiculado em textos técnicos por uma linguagem formalmente codificada. O saber escolar, conjunto dos conteúdos previstos na estrutura curricular das várias disciplinas escolares, muitas vezes, representa um recorte ou um resumo simplificado do saber científico. O saber científico, produzido em instâncias universitárias e institucionais de pesquisa, é vinculado à área acadêmica e veiculado em textos técnicos por uma linguagem formalmente codificada. O saber escolar, conjunto dos conteúdos previstos na estrutura curricular das várias disciplinas escolares, muitas vezes, representa um recorte ou um resumo simplificado do saber científico. Tendo em vista que a dinâmica ensino-aprendizagem requer muito mais do que a mera transmissão de conhecimentos, a Didática, uma disciplina pedagógica, tem como objeto de discussão as relações que envolvem as situações de ensino. Tendo em vista que a dinâmica ensino-aprendizagem requer muito mais do que a mera transmissão de conhecimentos, a Didática, uma disciplina pedagógica, tem como objeto de discussão as relações que envolvem as situações de ensino.

3 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Para explicitar a relação de interdependência entre ensino e aprendizagem, a Didática colabora na elaboração de um corpo teórico sobre os fundamentos filosóficos da Mediação e as implicações metodológicas desses fundamentos no trabalho educativo, em especial, na concepção de conteúdo de ensino e na elaboração da metodologia do ensinar. É o que denomina-se de SABER DE ENSINO criado na elaboração do conteúdo de ensino. Para explicitar a relação de interdependência entre ensino e aprendizagem, a Didática colabora na elaboração de um corpo teórico sobre os fundamentos filosóficos da Mediação e as implicações metodológicas desses fundamentos no trabalho educativo, em especial, na concepção de conteúdo de ensino e na elaboração da metodologia do ensinar. É o que denomina-se de SABER DE ENSINO criado na elaboração do conteúdo de ensino. Para apresentar o SABER DE ENSINO, o presente trabalho centra-se num exercício metodológico de conversão do conteúdo científico em conteúdo de ensino. Essa conversão ocorre pela relação de mediação dialética entre os saberes científicos da área pedagógica e da área de atuação com o saber cotidiano. Para apresentar o SABER DE ENSINO, o presente trabalho centra-se num exercício metodológico de conversão do conteúdo científico em conteúdo de ensino. Essa conversão ocorre pela relação de mediação dialética entre os saberes científicos da área pedagógica e da área de atuação com o saber cotidiano. MATERIAIS Para começar a atividade é necessário que cada aluno tenha recebido Para começar a atividade é necessário que cada aluno tenha recebido um envelope contendo 32 quadradinhos amarelos e 18 vermelhos. A quantidade desses quadradinhos foram calculadas através de méto A quantidade desses quadradinhos foram calculadas através de méto dos matemáticos para o perfeito resultado da atividade.

4 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Primeiro Passo Construa um quadrado com a metade dos quadradinhos vermelhos

5 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Primeiro Passo Construa um quadrado com a metade dos quadradinhos vermelhos Próximo passo a a a a

6 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Segundo Passo Faça o mesmo com os quadradinhos amarelos

7 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Próximo passo Segundo Passo Faça o mesmo com os quadradinhos amarelos b b b b

8 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Terceiro Passo Com os quadradinhos restantes construa um terceiro quadrado

9 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Próximo passo Terceiro Passo Com os quadradinhos restantes construa um terceiro quadrado h h h h

10 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Quarto Passo Com o lado de cada quadrado tente construir um triângulo retângulo

11 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Atividade Quarto Passo Com o lado de cada quadrado tente construir um triângulo retângulo 1 o PASSO | PRÓX. ETAPA h h a a b b

12 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Momentos da Aula Dê nome para quatro diferentes momentos identificados por você ao desenvolver a atividade realizada. 1 o PASSO | PRÓX. ETAPA

13 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Diagrama O conteúdo trabalhado nessa aula foi: Teorema de Pitágoras Quadrados e triângulos Catetos e hipotenusa ETAPA ANT.

14 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Diagrama Conteúdo de Ensino Você reconhece o momento em que montou os três quadrados, a partir de quadrados menores, como: Resgatando Ponto de Partida Conhecimento cotidiano ETAPA ANT.

15 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Conteúdo de Ensino Diagrama RESGATANDO Retomar as representações primeiras em relação ao conteúdo de ensino Ponto de Partida Parte, aparentemente independente do todo Saber Imediato O desafio de montar, com os quadrados, um triângulo de ângulo reto pode ser identificado como: Problematizando Estranhamento Conflito cognitivo ETAPA ANT.

16 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Conteúdo de Ensino Diagrama RESGATANDO PROBLEMATIZANDO Retomar as representações primeiras em relação ao conteúdo de ensino Ponto de Partida Parte, aparentemente independente do todo Saber Imediato Explicitar contradições entre representações iniciais e saber objetivo A etapa seguinte, na qual você depreendeu a regra do Teorema de Pitágoras a partir da atividade com os quadrados, pode ser entendida como: Explicação do conteúdo Amarrando idéias Sistematizando ETAPA ANT.

17 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Conteúdo de Ensino Diagrama RESGATANDO PROBLEMATIZANDO SISTEMATIZANDO Retomar as representações primeiras em relação ao conteúdo de ensino Ponto de Partida Parte, aparentemente independente do todo Saber Imediato Explicitar contradições entre representações iniciais e saber objetivo Discutir as contradições e o saber mediato a elas correspondentes: apropriação do saber objetivo Ao relacionar o que se aprendeu nessa aula com a fórmula h 2 = a 2 + b 2, você está: Produzindo Verificando aprendizagem Ponto de chegada ETAPA ANT.

18 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Conteúdo de Ensino Diagrama RESGATANDO PROBLEMATIZANDO PRODUZINDO SISTEMATIZANDO Retomar as representações primeiras em relação ao conteúdo de ensino Ponto de Partida Parte, aparentemente independente do todo Saber Imediato Elaborar uma nova síntese Ponto de Chegada Parte articulada ao todo Novo ponto de partida Saber Mediato Explicitar contradições entre representações iniciais e saber objetivo Discutir as contradições e o saber mediato a elas correspondentes: apropriação do saber objetivo ETAPA ANT. Realizando a conversão do saber científico em saber de ensino, essas etapas compõem a que tem como ponto de partida o saber imediato (cotidiano) em direção ao saber mediato (científico). metodologia na perspectiva da MEDIAÇÃO

19 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Conteúdo de Ensino Diagrama RESGATANDO PROBLEMATIZANDO PRODUZINDO SISTEMATIZANDO Retomar as representações primeiras em relação ao conteúdo de ensino Ponto de Partida Parte, aparentemente independente do todo Saber Imediato Elaborar uma nova síntese Ponto de Chegada Parte articulada ao todo Novo ponto de partida Saber Mediato Explicitar contradições entre representações iniciais e saber objetivo Discutir as contradições e o saber mediato a elas correspondentes: apropriação do saber objetivo ETAPA ANT. Metodologia na perspectiva da É centrada na problematização de uma situação capaz de gerar contradições entre o ponto de partida (imediato) e o de chegada (mediato) do processo educativo provocando assim a superação do imediato no mediato. MEDIAÇÃO

20 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Conteúdo de Ensino Diagrama RESGATANDO PROBLEMATIZANDO PRODUZINDO SISTEMATIZANDO Retomar as representações primeiras em relação ao conteúdo de ensino Ponto de Partida Parte, aparentemente independente do todo Saber Imediato Elaborar uma nova síntese Ponto de Chegada Parte articulada ao todo Novo ponto de partida Saber Mediato Explicitar contradições entre representações iniciais e saber objetivo Discutir as contradições e o saber mediato a elas correspondentes: apropriação do saber objetivo MEDIAÇÃOMEDIAÇÃO MEDIAÇÃO Relação dialética que tem como elementos constitutivos o movimento, a contradição dos termos mediato e imediato e a superação do imediato no mediato. CONCLUSÃOETAPA ANT. |

21 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Conclusão Ao se construir o triângulo retângulo utilizando conceitos de Geometria Plana, verifica-se a validade do Teorema de Pitágoras. Entretanto, essa proposta metodológica com quadradinhos só é aplicável quando o tamanho de um ou demais lados do triângulo retângulo (a, b e h) não é um número irracional (ex. a=1; b=1 e h=2). Isso implica na viabilidade dessa proposta para todos os outros casos. Assim, de forma proposital, escolheu-se para os tamanhos dos lados dos quadrados formados números não-irracionais, tal que ocorra a 2 + b 2 = h 2 (Teorema de Pitágoras). Com base nos conceitos geométricos, os alunos podem construir um triângulo retângulo com esses lados. Portanto, a Metodologia da mediação dialética possibilita desenvolver o conteúdo em questão de forma eficiente, tomados os devidos cuidados e as medidas oportunas mencionados. BIBLIOGRAFIA

22 UNIVERSIDADE ESTADUAL PAULISTA - UNESP IBILCE - CAMPUS DE SÃO JOSÉ DO RIO PRETO Bibliografia SAIR ARNONI. M. E. B. Questiones sobre la enseñanza: la dialéctica del trabajo educativo. In: Congresso Internacional Pedagogia Encuentro por la unidad de los educadores, Cuba, 2003, Havana. Palácio de Convenção de Havana. CD- ROM Softcal Empresa de Desarollo y Producción de Software de Qualidad, ISBN X. BARBOSA, J. L. M.Geometria euclidiana plana. 1. ed.Rio de Janeiro: S.B.M, BIGODE, A. J. L. Matemática hoje é feita assim. v. 7. São Paulo: F.T.D, DOLCE, O. POMPEU, J. N. Fundamentos de Matemática Elementar. 7. ed. v. 9. São Paulo: Atual, cap.XIV. CONCLUSÃO


Carregar ppt "Didática e a conversão do saber científico em saber de ensino: um exercício metodológico com o saber matemático. Denis da Silva Monteiro Jeferson Gomes."

Apresentações semelhantes


Anúncios Google