A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Lógica Proposicional UESC Disciplina: Fundamentos Matemáticos para Computação Professor: Rogério Vargas Alunos: Álvaro Maciel, Caíque Martins, Diógenes.

Apresentações semelhantes


Apresentação em tema: "Lógica Proposicional UESC Disciplina: Fundamentos Matemáticos para Computação Professor: Rogério Vargas Alunos: Álvaro Maciel, Caíque Martins, Diógenes."— Transcrição da apresentação:

1 Lógica Proposicional UESC Disciplina: Fundamentos Matemáticos para Computação Professor: Rogério Vargas Alunos: Álvaro Maciel, Caíque Martins, Diógenes Victor, Giovanne Almeida, Leandro Oliveira.

2 Conceito Lógica proposicional é um sistema no qual as fórmulas representam proposições que podem ser formadas pela combinação de proposições atômicas usando conectivos lógicos e um sistema de regras de inferência. Conectivos lógicos ConectivoSignificado ¬não ^e vou ->se... então se e somente se para todo existe

3 Tabela-Verdade Tabela-verdade é um tipo de tabela matemática usada em Lógica para determinar se uma fórmula é válida ou se um sequente é correto. As principais Operações do Cálculo Proposicional: Negação Conjunção (E) Disjunção (OU) Condicional (Se... Então) Bi-condicional (Se e somente se)

4 Regras de inferência Regras de negação: O operardor 'não é caso que' prefixa uma sentença para formar uma nova sentença a qual é chamada negação da primeira. Assim, a sentença 'Não é o caso que ele é fumante' é a negação da senteça 'Ele é fumante'. Regras do condicional: Os enunciados formados por 'se... então' chamam-se condicionais. O enunciado subsequente a 'se' é chamado antecedente; o enunciado restante, consequente. Regras do bi-condicional: Os enunciados formados por 'se e somente se' chamam-se bi-condicionais. Um bi-condicional pode ser considerado como uma conjunção de dois condicionais.

5 Regras de inferência Regras de conjunções: A conjunção entre duas fórmulas só é verdadeira quando ambas são verdadeiras. Regras de disjunção: A disjunção entre duas fórmulas só é verdadeira quando ao menos uma delas é verdadeira. Regras para universal: A quantificação universal é válida para mostrar que para todo e qualquer elemento de um determinado conjunto, as sentenças (afirmações ou conjecturas) serão verdadeiras. Ou seja, para todo elemento escolhido no conjunto a afirmação será verdadeira. Regras para existencial: Análogo ao quantificador universal, o existencial é válido para mostrar que somente para alguns elementos de um determinado conjunto, algumas sentenças serão verdadeiras. Ou seja, existe ao menos um elemento no conjunto que torne a afirmação verdadeira.


Carregar ppt "Lógica Proposicional UESC Disciplina: Fundamentos Matemáticos para Computação Professor: Rogério Vargas Alunos: Álvaro Maciel, Caíque Martins, Diógenes."

Apresentações semelhantes


Anúncios Google