A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

I NTRODUÇÃO A A LGORITMOS N UMÉRICOS Prof. Renata S.S. Guizzardi 2012/01.

Apresentações semelhantes


Apresentação em tema: "I NTRODUÇÃO A A LGORITMOS N UMÉRICOS Prof. Renata S.S. Guizzardi 2012/01."— Transcrição da apresentação:

1 I NTRODUÇÃO A A LGORITMOS N UMÉRICOS Prof. Renata S.S. Guizzardi 2012/01

2 A GENDA Introdução Erros Detalhes da Disciplina: Ementa Métodos de Avaliação Outros Detalhes

3 I NTRODUÇÃO

4 O QUE SÃO A LGORITMOS N UMÉRICOS ? São programas de computador capazes de solucionar problemas matemáticos, fornecendo resultado numérico aproximado. Apesar de aproximada, a solução pode ser obtida em um grau crescente de exatidão.

5 1) Um problema de Matemática pode ser resolvido analiticamente, mas esse método pode se tornar impraticável com o aumento do tamanho do problema. Ex.: solução de sistemas de equações lineares. 5 P OR QUE UTILIZAR ? (1/2)

6 2) O problema não tem solução analítica. Exemplos: a) não representável por funções elementares; b) não pode ser resolvido analiticamente; 6 P OR QUE UTILIZAR ? (2/2)

7 F UNÇÃO DE A LGORITMOS N UMÉRICOS NA E NGENHARIA Solucionar problemas técnicos através de métodos numéricos, usando um modelo matemático 7

8 Calcular tensões dos nós do circuito elétrico (pag. 117): No nó 1, pela lei de Kirchhoff: E XEMPLO DE A PLICAÇÃO (1/2)

9 E XEMPLO DE A PLICAÇÃO (2/2) O problema é resolvido a partir de um sistema linear de quatro equações e quatro variáveis V1, V2, V3 e V4.

10 R ESOLUÇÃO DE P ROBLEMAS Problema Real Levantar Dados Construir Modelo Matemático Escolher Método Numérico Implementar Método Computacionalment e Solução Numérica Analisar Resultados Eventualmente Rever

11 N O EXEMPLO ANTERIOR Problema real: determinar tensões nos nós dos circuitos. Levantamento de dados: valores das resistências e tensões nos pontos A e B. Construir modelo matemático: montar equações e criar as matrizes a partir delas. Escolher método numérico: Decomposição LU, Decomposição de Cholesky, Fatoração LDL T, Método de Jacobi etc. Implementar Método Computacionalmente: criar e processar programa. Analisar resultados e verificar se o modelo matemático ou o método numérico precisam ser alterados.

12 E RROS

13 T IPOS DE E RROS (1/6) Erro na Modelagem Devido à expressão matemática que não reflete perfeitamente o fenômeno físico ou aos dados terem sido obtidos com pouca exatidão. Erro Grosseiro Devido a erro na elaboração ou implementação do algoritmo ou a erro de digitação.

14 T IPOS DE E RROS (2/6) - T RUNCAMENTO Erro de Truncamento: Devido à aproximação de uma fórmula. expansão da função exponencial em séries de potência Exercício: Calcular o valor de e 1 por meio de uma série truncada de segunda ordem. Verificar o erro sabendo-se que o valor com 4 algarismos significativos é 2,718.

15 T IPOS DE E RROS (3/6) - A RREDONDAMENTO Erro de Arredondamento: Devido à forma de representação de números no computador. Conversão de base (decimalbinário) Problema com o número de bits que são usados para representar os números (números fracionários). Nem sempre um número decimal exato tem representação exata em binário. Ex. 0,1 10 0, = 0, (erro de 0, ).

16 T IPOS DE E RROS (4/6) - A RREDONDAMENTO A RITMÉTICA DE P ONTO F LUTUANTE Números em ponto flutuante (reais) são representados no formato normalizado : 5 = 0.5 x ,007 = 0.7 x ,42 = x 10 2 Representação no computador

17 T IPOS DE E RROS (5/6) - A RREDONDAMENTO A RITMÉTICA DE P ONTO F LUTUANTE Suponha uma mantissa de tamanho 4: Represente -8 Represente 37 Some 0,375 e 0,05 Qual o maior número que pode ser representado nesse computador?

18 T IPOS DE E RROS (4/6) - A RREDONDAMENTO A RITMÉTICA DE P ONTO F LUTUANTE Formato IEEE de ponto flutuante

19 E RRO A BSOLUTO E E RRO R ELATIVO Duas formas de medir o erro. Erro Absoluto = valor real – valor aproximado. Erro Relativo = valor real – valor aproximado valor real

20 O UTROS C ONCEITOS I MPORTANTES Complexidade computacional Medida do esforço computacional despendido para resolver o problema. Medido pelo número necessário de operações aritméticas e lógicas. Convergência Propriedade de gerar solução exata. Ordem de Convergência: rapidez com que a sequência gerada por dado método converge para a solução exata.

21 D ESASTRES C AUSADOS POR E RROS NAS S OLUÇÕES (1/3) Exemplo 1: Falha no lançamento de mísseis (25/02/1991 – Guerra do Golfo – míssil Patriot) 21 Erro de 0,34 s no cálculo do tempo de lançamento Limitação na representação numérica (24 bits)

22 Exemplo 2: Explosão de foguetes (04/06/1996 – Guiana Francesa – foguete Ariane 5) 22 Erro de trajetória 36,7 s após o lançamento Limitação na representação numérica (64 bits/ 16 bits) Prejuízo: U$ 7,5 bilhões D ESASTRES C AUSADOS POR E RROS NAS S OLUÇÕES (2/3)

23 D ESASTRES C AUSADOS POR E RROS NAS S OLUÇÕES (3/3) Exemplo 3: Afundamento de Plataforma Marítima (23/08/1991 – Mar do Norte/Noruega – Plataforma Sleipner) Rompimento de uma das Células que compunham a parede Parcialmente causada por erro de análise no elemento finito Prejuízo: U$ 700 milhões

24 D ETALHES DA D ISCIPLINA

25 E MENTA 1. Introdução 2. Sistemas Lineares 3. Interpolação Polinomial 4. Ajuste de Curvas 5. Equações Diferenciais Ordinárias 6. Integração Numérica 7. Raízes de Equações

26 L IVRO T EXTO Frederico Ferreira Campos Filho. Algoritmos Numéricos, 2 ed., Rio de Janeiro: LTC p.

27 A VALIAÇÃO Duas provas parciais 1ª prova: 4 primeiros itens da ementa – data:23/05/2012 2ª prova: 3 últimos itens da ementa – data:06/07/2012 Um trabalho computacional Entrega: Duas listas de exercício (completa) Entrega: uma aula antes das provas. Cálculo da Média: (0,7 x Médias das provas) + (0,25 x Trabalho Computacional) + (0,05 x Entrega das listas de exercício completas)

28 H ORÁRIO DE A TENDIMENTO Horário de Atendimento 5ªs – 14:00 às 17:00 P ÁGINA DO C URSO tml


Carregar ppt "I NTRODUÇÃO A A LGORITMOS N UMÉRICOS Prof. Renata S.S. Guizzardi 2012/01."

Apresentações semelhantes


Anúncios Google