A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Encaminhamento com QoS

Apresentações semelhantes


Apresentação em tema: "Encaminhamento com QoS"— Transcrição da apresentação:

1 Encaminhamento com QoS
Sistemas Telemáticos LESI Grupo de Comunicações por Computador A Internet está cada vez mais a ser usada para serviços em tempo real como audio/videoconferência, webcasting, telemedecina.Isto exige que a rede forneça garantias de qualidade de serviço. As necessidades da aplicação são especificadas em termos de métricas de QoS como largura de banda, tempo de resposta, etc...

2 Materiais utilizados Tema ainda objecto de I&D (2 doutoramentos nessa área no DI) Artigo “Survey of QoS” de Pragyansmita Paul and S. V. Raghavan Adaptação e simplificação de apresentação dos mesmos autores

3 Sumário Vantagens da Qualidade de Serviço (QoS) QoS Fim-a-Fim
Encaminhamento com QoS Questões em aberto no Encaminhamento com QoS Algoritmos propostos (classificados com métricas) Um-para-um Simples Dual Múltiplo Grupo Simples Dual Múltiplo

4 QoS A um conjunto de métricas e restrições que são usadas para especificar os requisitos das aplicações e que devem ser satisfeitas pela rede de suporte durante a transmissão de dados. As métricas de QoS são: Largura de Banda Atrasos Variação nos atrasos (Jitter) Perda de Pacotes (Fiabilidade) Número de saltos, Qualidade Áudio/Vídeo, etc.

5 QoS Fim-a-Fim É necessária para:
Disponibilizar garantias sólidas necesárias pelas actuais aplicações com temporização crítica e com necessidades intensivas de largura de banda. Prevenir a deterioração do desempenho da rede devido a aplicações mal comportadas. Para optimizar o desempenho todas as camadas da pilha de protocolos devem suportar o QoS a disponibilizar à aplicação de rede a ser executada.

6 QoS na Pilha de Protocolos
Aplicação ??? Transporte ??? Rede ??? Ligação Lógica ??? Meio Físico

7 QoS na Pilha de Protocolos
Aplicação Diferentes Classificações e Escalonamento dos pedidos Transporte Aceitação/rejeição dos pedidos de conexão Rede Selecção de Percursos de forma a satisfazer os requisitos das aplicações Ligação Lógica Comunicação de Dados de forma satisfazer os requisitos das camadas superiores Meio Físico

8 Sequência de acções para disponibilizar a QoS fim-a-fim
Pedido de QoS por um host Não Selecção do Percurso e transferência dos dados (Encaminhamento com QoS) Não Tradução e negociação do QoS Fim da Transferência dos dados? Pedido aceite? Sim A Sim Fim da transferência dos dados

9 Encaminhamento com QoS
B Busca na tabela de encaminhamento Controlo de Admissão Actualização da informação de estado Gestão de Recursos Reserva de Recursos (opcional) Fim da Transferência dos dados? C Não C Armazenamento e Escalonamento de pacotes Sim Fim da Transferência de Dados B

10 Negociação de QoS e Controlo de Admissão
A negociação começa quando o sistema final envia o seu pedido de QoS O módulo de controlo de admissão verifica se o pedido deve ser aceite ou rejeitado Factores de decisão: LB residual, Nº Tx em curso Se a aceitação levar à degradação de desempenho , o pedido é rejeitado Alternativa: reencaminhamento das aplicações existentes Renegociação do QoS

11 Negociação de QoS e Controlo de Admissão(2)
O sistema final (end-host) pode fazer o controlo de admissão Faz o probe do nível de congestão Admite o fluxo se o nível for baixo Experiências: Menor degradação de desempenho se o controlo de admissão pelos sistemas finais em alternativa a ser feito pelos encaminhadores

12 Reserva de Recursos Uma vez aceite o pedido
é escolhido o percurso para transmissão de dados com base em uma ou mais métricas Necessária para satisfazer restrições de QoS da aplicação Duas alternativas Fazer parte do estabelecimento do percurso Ser um processo separado

13 Armazenamento e Escalonamento dos Pacotes
Pacote recém-chegado ao encaminhador É transferido para a interface de saída e armazenado num buffer É descartado Objectivo:Minimizar o descarte de pacotes Algoritmos de gestão de filas Algoritmos de escalonamento de pacotes

14 Algoritmos de Escalonamento
Fair Queueing (FQ) 1 fila por fluxo (informação de estado por fluxo) Stochastic Fair Queueing (SFQ) Menor nº de filas que FQ, uso de função de hash Core Stateless Fair Queueing (CSFQ) 2 classes de encaminhadores: De fonteira mantêm informação de estado por fluxo Estimam débito de chegada por fluxo (passam aos interiores) Interiores Em situação de congestão, descartam pacotes aleatóriamente com base nessa estimação

15 Algoritmos de Gestão de Filas
RED (Random Early Detection) & RIO CHOKe (CHOose and Keep for responsive flows) Considerar o buffer como uma amostra estatística do tráfego Em situação de congestão, na chegada de pacote Escolhe um pacote do buffer aleatoriamente Se for do mesmo fluxo, descarta os dois Senão: o do buffer fica intacto e o chegado é aceite em função do nível de congestão

16 Lookup da Tabela de Encaminhamento
Maior gargalo do processo de expedição dos pacotes Mais crítica com tecnologias de alta velocidade Unificação simples (tries) Unificação mais longa (PATRICIA) Multi-Protocol Label Switching (MPLS) Etiqueta de comprimento fixo Cada pacote tem uma etiqueta Etiqueta usada para busca na tabela

17 Gestão de Recursos Necessária para gerir a dinâmica das conexões estabelecidas Reserva estática de recursos GR necessária para verificar utilização eficiente de recursos Reserva dinâmica?? Quando não há reserva de recursos Assegurar uma partilha adequada entre as conexões e que as exigências de cada fluxo é limitado Quando cada serviço recipiente recebe o mínimo de QoS, considera-se adequada

18 Fluxos BE num QoS Router
Para além dos fluxos com QoS, as aplicações BE devem ser geridas de forma apropriada. Exemplo de trabalho nesse sentido Restrição de LB para fluxos com QoS Usa informação imprecisa para o estado de fluxos MaxMin Fair Routing para fluxos BE Maximiza a LB para fluxos que recebem menor LB entre todos Escalonamento hierárquico com WFQ para alocação de LB

19 Selecção do Percurso – Métricas e Restrições
Aditiva w = w1 + w2 + w3 Métrica Multiplicativa w = w1 . w2 . w3 Côncava w = max{w1 , w2 , w3} w1 w2 w3 Percurso P

20 Selecção do Percurso – Métricas e Restrições
Simples Métricas Dual Múltiplas Simples: Custo, Largura de Banda, Atraso Dual: Custo e Atraso;LB e Atraso; LB e Custo Múltiplas: ...

21 Selecção do Percurso – Métricas e Restrições
Como transformar uma métrica multiplicativa em aditiva? w1.w2.w3 => log(w1)+log(w2)+log(w3) Como transformar uma métrica dual (míltipla) numa métrica simples? (w1,w2) => w´= w1+k w2 Como transformar uma métrica com valor real ou inteiro não limitado numa com valor inteiro limitado? w < c => w’= w* x/c

22 Selecção de Percurso – ME vs. QoS
Percurso escolhido min. salto/custo Percurso Escolhido ? [1,2] B [1,4] [1,1] A [3,7] [4,1] [2,2] C E [3,1] D F D E F 1 A B C Percurso Métrica 1 Métrica 2 F-B 3 7 F-A-B 5 F-E-D-C-B 6

23 Selecção de Percurso – ME vs. QoS
Em contextos BE é mais fácil descobrir o PMC Em contextos com QoS É necessário considerar um conjunto de métricas cada aresta do grafo tem mais que uma métrica associada A escolha do PMC depende de Regra de composição de métricas Prioridade/Peso atribuídos a cada métrica

24 Selecção de Percurso no Encaminhamento com QOS
Wang e Crowcroft provaram que encontrar um percurso sujeito a duas ou mais restrições independentes (aditivas e/ou multiplicativas) é um problema NP-Completo.

25 Selecção de Percurso no encaminhamento com QoS – Resultados interessantes
Quando o número de métricas consideradas é infinito, é suficiente calcular o percurso de menor número de saltos, sem se ter que considerar distribuição dos pesos das métricas independentes. (resultado com interesse teórico) Podem existir classes de grafos nos quais o encaminhamento com QoS não é NP-Completo. (Referência: P. Van Mieghem, F. A. Kuipers, “On the Complexity of QoS Routing”, na Computer Communications.).

26 Classificação de Algoritmos/Protocolos
Unicast Simples Múltiplo Dual Multicast Simples Múltiplo Dual Bandwidth Delay Custo +Atraso Largura de banda + atraso Qq 2 métricas aditivas Múltiplas Custo Atraso Métrica não aditiva Custo + Atraso Atraso + Jitter Múltipla Largura de banda Atraso

27 Encaminhamento unicast Restrição de Largura de Banda
Filtragem da Topologia Algoritmo de Guerin Orda N5 N1 N3 N4 N2 -log (0.1) Problema aditivo N1 N3 N4 N2 0.1 0.2 N5 N1 N3 N4 N2 N5 N1 N3 N4 N2 N5 0.1 0.2 N1 N3 N4 N2 N5 N1 N3 N4 N2 N5 4 3 5 N1 N3 N4 N2 N5 1 2 4 3 5 N1 N3 N4 N2 N5 1 2 4 3 5 LB > 2 Maximizar Probablidade (LB Residual > 2)

28 Classificação de Algoritmos/Protocolos
Unicast Simples Múltiplo Dual Multicast Simples Múltiplo Dual LB Atraso Múltiplas Custo Atraso Métrica não aditiva Custo + Atraso Atraso + Jitter Múltipla Custo+Atraso LB + Atraso Qualquer 2 métricas aditivas

29 Encaminhamento Unicast com QoS Restrições de Atraso e Largura de Banda
Algoritmo de Wang Crowcroft Elimina todas as ligações com largura de banda inferior à requerida. A seguir, encontra o percurso mais curto relativamente ao atraso no grafo modificado usando o algoritmo de Djikstra. N1 N3 N4 N2 N5 4 3 5 N1 N3 N4 N2 N5 4 3 5 N1 N3 N4 N2 N5 1 2 4 3 5 N1 N3 N4 N2 N5 1 2 4 3 5 LB > 2

30 Percurso mais curto com o Algoritmo de Djikstra
Dado um grafo ponderado G=(V,E), e um par de vértices vs e vd Î V qual é o percurso mais curto de vs para vd? Isto é qual é o percurso com a mínima soma dos pesos das arestas? 1 2 4 6 3 5 10 7 8 1 2 4 6 3 5 10 7 8

31 Abordagem básica PMC de A para H = PMC de A para E + PMC de E para H
A B E F H 15 A B E G H 14 A C E F H 16 A C E G H 15 A D E F H 26 A D E G H 25 B 1 2 F 5 7 1 3 A C E H 5 6 6 8 G D PMC de A para H = PMC de A para E + PMC de E para H PMC de A para H = PMC de A para B + SP from B to H. PMC de A para H = PMC de A para C + SP from C to H. PMC de A para H = PMC de A para vi + SP from vi to H; " vi.

32 Algoritmo de Dijkstra para PMCs
Síntese: Manter uma estrutura de dados com a lista de nós e pesos dos percursos para esses nós Usar infinito para representar um no conjunto S de nós para os quais não tenha sido calculado um percurso Em cada iteração, encontrar um nó em S, calcular o percurso para esse nó e apagá-lo de S

33 Algoritmo de Dijkstra para PMCs
Síntese: Manter uma estrutura de dados com a lista de nós e pesos dos percursos para esses nós Usar infinito para representar um no conjunto S de nós para os quais não tenha sido calculado um percurso Em cada iteração, encontrar um nó em S, calcular o percurso para esse nó e apagá-lo de S

34 Algoritmo de Dijkstra para PMCs
S = {0} /* Actual MST */ for i = 0 to n D[i] = M[0][i] /* Shortest path length from 0 to i */ end for for i = 1 to n-1 find the smallest D[v] such that v  S S = S  {v} for all vertices u  S if (D[u] > D[v] + M[v][u]) then D[u] = D[v] + M[v][u] end if

35 Algoritmo de Dijkstra Custo do Percurso mais curto de A para vi atavés de S B 1 2 F 5 7 A B C D E F G H -- 2 1 6 ? 1 3 A C E H 5 6 6 8 G S = {A} D B 1 2 F 5 7 A B C D E F G H -- 2 1 6 4 ? 1 3 A C E H 5 6 6 8 G S = {A,C} D

36 Algoritmo de Dijkstra(2)
Custo do Percurso mais curto de A para vi atavés de S B 1 2 F 5 A B C D E F G H 7 1 3 A C E H -- 2 1 6 3 ? ? ? 5 6 6 8 G S = {A,C,B} D B 1 2 F 5 7 A B C D E F G H 1 3 A C E H -- 2 1 6 3 10 8 ? 5 6 6 8 G S = {A,C,B,E} D

37 Algoritmo de Dijkstra(3)
Custo do Percurso mais curto de A para vi atavés de S B 1 2 F 5 7 A B C D E F G H 1 3 A C E H -- 2 1 6 3 10 8 ? 5 6 6 8 G S = {A,C,B,E,D} D B 1 2 F 5 7 A B C D E F G H 1 3 A C E H -- 2 1 6 3 10 8 14 5 6 6 8 G S = {A,C,B,E,D,G} D

38 Algoritmo de Dijkstra (4)
Custo do Percurso mais curto de A para vi atavés de S B 1 2 F 5 7 A B C D E F G H 1 3 A C E H -- 2 1 6 3 10 8 14 5 6 6 8 G S = {A,C,B,E,D,G,F} D B 1 2 F 5 7 A B C D E F G H 1 3 A C E H -- 2 1 6 3 10 8 14 5 6 6 8 G S = {A,C,B,E,D,G,F,H} D

39 Algoritmo de Dijkstra: Exemplo
1 2 3 4 5 6 -- ? 10 7 12 11 1 2 4 6 3 5 10 7 8

40 Classificação de Algoritmos/Protocolos
Unicast Simples Múltiplo Dual Multicast Simples Múltiplo Dual LB Atraso Múltiplas Custo Atraso Métrica não aditiva Custo + Atraso Atraso + Jitter Múltiplas Custo +Atraso LB + Atraso Quaisquer 2 métricas aditivas

41 Encaminhamento Unicast com QoS Restrições de quaisquer duas métricas aditivas
[w1,15,w2,15] [w1,54,w2,54] [w1,23,w2,23] [w1,24,w2,24] [w1,53,w2,53] N1 N3 N4 N2 N5 w15 w12 w23 w54 w53 w24 w = w1 + d w2 Combinação de métricas ponderadas de Jaffe propõe a minimização duma combinação linear de pesos de 2 ligações w1 + dw2 onde d=1 ou d=(c1/c2). A última obtém melhores resultados que a primeira. Foi proposta uma estratégia de procura binária para escolher o peso.

42 Classificação de Algoritmos/Protocolos
Unicast Simples Múltiplo Dual Multicast Simples Múltiplo Dual LB Atraso Múltiplas Custo + Atraso Atraso + Jitter Múltiplas Custo +Atraso Custo LB + Atraso Atraso Quaisquer 2 métricas aditivas Métrica não aditiva

43 Problema de Steiner Seja G=(V, E) um grafo indirecto com um número finito de vértices V e um conjunto de arestas E, e uma função de custo que atribui a cada aresta um valor de custo real e positivo. Dado um subconjunto S dos vértices de V, o problema de Steiner é encontrar um subgrafo G´ de G, G' =(V', E'), que contém todos os vértices em S, de tal forma que o custo de todas arestas em E' é mínimo. Os vértices em S são designados por especiais. The Steiner tree problem has been proved to be NP-complete, and no algorithms can solve it in polynomial time. However, in the recent decade, heuristics have been proposed to provide near-optimal solutions

44 Encaminhamento Multicast com QoS Restrições de custo
Uma árvore que alcansa todos membros do grupo e minimiza o custo total da árvore partilhada. Encontrar essa árvore é um problema NP-Completo. Algoritmo de Kou, Markowsky e Berman (KMB) Criar um grafo conexo onde as arestas sejam as distâncias mais curtas entre os membros do grupo. O algoritmo de Prim calcula a a árvore de menor custo deste grafo conexo. As arestas do grafo conexo são posteriormente substituídas pelos percursos mais curtos originais para obter a árvore de Steiner. N1 N3 N4 N2 N5 1 2 3 4

45 Serviços Diferenciados
Abordagens para QoS Serviços Integrados Serviços Diferenciados Abordagem com informação de estado, com informação por fluxo. Abordagem sem informação de estado e portanto mais escalável Serviço fim-a-fim grantido por fluxo. Necessidade de reserva de recursos. Diferenciação de serviço mais grossa. Nós de fronteira classificam os pacotes enquanto os nós interiores os processam de acordo com a classificação.

46 Eficácia do Encaminhamento com QoS
Embora o encaminhamento com QoS aumente a computação em cada nó, armazenamento de estado e custo de comunicação, tem a vantagem de aumentar a utilidade da rede e permitir uma degração graciosa do desempenho. A presença de mecanismos com QoS assegura que mesmo as aplicações mais convencionais e cujo QoS sempre foi esquecido obtenham um melhor desempenho do serviço de rede.. O encaminhamento com QoS é mais eficaz quando há desajustamento entre o tráfego e a capacidade da rede e existem rotas alternativas com menor carga. .

47 Questões em aberto Necessidade de protocolos para encaminhamento com QoS e técnicas de negociação de QoS normalizados Mecanismos eficientes para evitar percursos com congestão, atrasos altos de propagação e instabilidade no processo de selecção de percursos. (Contd …)

48 Questões em aberto(2) A imprecisão na informação de estado precisa de ser manipulada de forma apropriada. Ao mesmo tempo que se maximiza o número de fluxos com QoS, deve-se procurar optimizar o desempenho e tempo de resposta ao tráfego best-effort. Necessidade dum algoritmo/protocolo de QoS genérico que use por exemplo uma única métrica representativa de todas as outras com um mínimo de perda de informação..

49 Resumo da Aula Encaminhamento com QoS
Algoritmos e protocolos propostos para encaminhamento com QoS em ambientes unicast e multicast. Benefícios de desenvolvimento de encaminhamento com QoS routing na interligação de redes actualmente. Questões em aberto no encaminhamento com QoS


Carregar ppt "Encaminhamento com QoS"

Apresentações semelhantes


Anúncios Google