A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Derivadas Nocao_derivada.gsp. Definição de derivada de uma função num ponto Seja f uma função real, de variável real, e seja a um ponto do seu domínio.

Apresentações semelhantes


Apresentação em tema: "Derivadas Nocao_derivada.gsp. Definição de derivada de uma função num ponto Seja f uma função real, de variável real, e seja a um ponto do seu domínio."— Transcrição da apresentação:

1 Derivadas Nocao_derivada.gsp

2 Definição de derivada de uma função num ponto Seja f uma função real, de variável real, e seja a um ponto do seu domínio. Chama-se derivada da função f, no ponto a, e representa-se por f(a), ao limite (se existir)

3 Definição de derivada de uma função num ponto Observação: Designando x – a por h, a derivada de f, no ponto a, também se pode escrever. Resolver o exercício 352

4 Exercício 352 Usa a definição de derivada de uma função num ponto para calcular: a)f (-1), sendo f(x) = 2 x 3 + x + 1 b)g (1), sendo g(x) = e 2x c)h (0), sendo d)r (2), sendo e)s(2), sendo s(x) = lnx

5 Interpretação geométrica do conceito de derivada de uma função num ponto Seja f uma função real de variável real, e seja a um ponto do seu domínio. A derivada da função f, no ponto a, é o declive da recta tangente ao gráfico de f no ponto de coordenadas (a, f(a)). f(a) é o declive da recta r Resolver o exercício 358

6 Exercício 358 Seja f(x) = 0,5x 2 – x + 1 a)Escreve a equação reduzida da recta secante ao gráfico de f nos pontos de abcissa 0 e 2. b)Escreve a equação reduzida da recta tangente ao gráfico de f no ponto de abcissa 0.

7 Interpretação física do conceito de derivada de uma função num ponto Se, para cada valor de t, f(t) representar o espaço percorrido por um móvel até ao instante t, então a derivada da função f, no ponto a, é a velocidade do móvel no instante a. Resolver o exercício 360

8 Exercício 360 Uma partícula move-se sobre uma recta de acordo com a lei e = 5t t, sendo e a distância percorrida em metros ao fim de t segundos. a)Calcula a velocidade média no intervalo [1,4]. b)Calcula a velocidade no instante t = 3.

9 Exercício 355 Pretendemos provar que a derivada de uma função par é uma função ímpar (e vice- versa). Hipótese: f é par isto é Tese: f´ é ímpar isto é Demonstração: Calculemos e provemos que é igual a.

10 Exercício 355 (cont.) Prove agora que a derivada de uma função ímpar é uma função par, seguindo um processo semelhante ao que acabámos de utilizar

11 Derivabilidade e continuidade Se uma função tem derivada finita num ponto, então é contínua nesse ponto. Hipótese: Existe Tese: f é contínua em a. Demonstração:

12 Derivabilidade e continuidade Logo se então o que significa que f é contínua em a O recíproco não é verdadeiro: uma função pode ser contínua num ponto e não existir derivada finita nesse ponto. Resolver o exercício 364

13 Derivabilidade e continuidade Resolver o exercício 364 Se e o que se pode dizer sobre a existência de ?

14 Derivadas laterais Seja f uma função real, de variável real, e seja a um ponto do seu domínio. Chama-se derivada lateral direita da função f, no ponto a, e representa-se por, ao limite (se existir)

15 Derivadas laterais Seja f uma função real, de variável real, e seja a um ponto do seu domínio. Chama-se derivada lateral esquerda da função f, no ponto a, e representa-se por, ao limite (se existir)

16 Interpretação geométrica das derivadas laterais As derivadas laterais da função f, no ponto a, são os declives das semi-tangentes ao gráfico de f, nesse ponto. é o declive da semi-recta r é o declive da semi-recta s

17 Interpretação geométrica das derivadas laterais Como as duas semi-tangentes não estão no prolongamento uma da outra, têm declives diferentes, pelo que

18 Interpretação geométrica das derivadas laterais A função não tem, portanto, derivada no ponto a. Dizemos que o ponto de coordenadas (a,f(a)) é um ponto anguloso do gráfico de f. Resolver os exercícios 362, 367, 368, 369, 372 e 376

19 Resolver os exercícios 362, 367, 368, 369, 372, 375 e , Seja f a função definida por Justifique que f não é derivável em 0.

20 Resolver os exercícios 362, 367, 368, 369, 372, 375 e Prove que a função f definida, em IR, por é contínua no ponto de abcissa 2 mas não tem derivada nesse ponto.

21 Resolver os exercícios 362, 367, 368, 369, 372, 375 e Seja f a função definida, em IR, por: Determina a e b de modo que f seja derivável no ponto de abcissa 2.

22 Resolver os exercícios 362, 367, 368, 369, 372, 375 e Seja f a função representada graficamente por: Esboce o gráfico de f´.

23 Resolver os exercícios 362, 367, 368, 369, 372, 375 e Seja f de domínio definida por Investiga se f é derivável no ponto de abcissa 0 e caracteriza f´(x).

24 Resolver os exercícios 362, 367, 368, 369, 372, 375 e Seja h a função definida por: Define a função h´ e representa graficamente as funções h e h´.

25 Resolver os exercícios 362, 367, 368, 369, 372, 375 e Seja f a função definida por: Caracteriza f´e representa graficamente f e f´


Carregar ppt "Derivadas Nocao_derivada.gsp. Definição de derivada de uma função num ponto Seja f uma função real, de variável real, e seja a um ponto do seu domínio."

Apresentações semelhantes


Anúncios Google