A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Diagrama de BODE Módulo em decibéis (dB) Fase em graus.

Apresentações semelhantes


Apresentação em tema: "Diagrama de BODE Módulo em decibéis (dB) Fase em graus."— Transcrição da apresentação:

1 Diagrama de BODE Módulo em decibéis (dB) Fase em graus

2

3 fig_10_09

4 fig_10_10

5 fig_10_11

6 fig_10_12

7 fig_10_13

8 fig_10_14

9 fig_10_15

10 fig_10_16

11 fig_10_17

12 fig_10_10

13 fig_10_18

14 fig_10_19

15 Critério de Estabilidade de NYQUIST Relaciona a estabilidade de um sistema de malha fechada com a resposta em frequência de malha aberta e à posição dos pólos e zeros de malha aberta; O critério é basicamente para análise de estabilidade mas seus conceitos podem ser estendidos para análise da resposta transitória e erros de estado estacionário; O critério é baseado nos seguintes conceitos: –Relação entre os pólos de 1+G(s)H(s) e os pólos de G(s)H(s); –Relação entre os zeros de 1+G(s)H(s) e os pólos da função de transferência de malha fechada T(S); –O conceito de mapeamento de pontos em uma função F(s); –O conceito de mapeamento de contornos em uma função F(s).

16 Critério de Estabilidade de NYQUIST Baseia-se no mapeamento de contornos no plano complexo de F(s) onde conhecemos seus pólos e zeros;

17 Critério de Estabilidade de NYQUIST O mapeamento de um contorno no sentido horário que envolve um zero de F(s) resulta em um contorno que circunda a origem do plano complexo também no sentido horário;

18 Critério de Estabilidade de NYQUIST O mapeamento de um contorno no sentido horário que envolve um pólo de F(s) resulta em um contorno que circunda a origem do plano complexo no sentido anti-horário;

19 Obs.:No caso da figura e o sentido do mapeamento pode ser horário ou anti-horário dependendo se o polo esta a direita ou a esquerda do zero respectivamente

20 Representação de mapeamento por vetor

21 Critério de Estabilidade de NYQUIST Desta forma se F(s) possui P Pólos e Z Zeros envolvidos por um determinado contorno no sentido horário, o mapeamento deste contorno através de F(s) irá produzir um contorno que envolverá a origem N vezes no sentido anti- horário, com N=P-Z. –Um resultado para N positivo significa que P é maior do Z e o contorno resultante esta no sentido anti-horário. Ou seja, convencionamos contornos positivos aqueles no sentido anti-horário.

22 Critério de Estabilidade de NYQUIST Um sistema típico de controle com realimentação negativa unitária é dado por: Onde F.T.M.A= e F.T.M.F=

23 Critério de Estabilidade de NYQUIST Para estabilidade quero saber se existem ou não pólos de Malha Fechada do lado direito do plano s. Se considero um contorno que engloba todo o lado direito do plano s e mapear este contorno através de 1+G(s)H(s) eu poderia através do conceito desenvolvido anteriormente saber se existem ou não pólos instáveis.

24 Critério de Estabilidade de NYQUIST No entanto para fazermos o mapeamento precisamos conhecer os pólos de 1+G(s)H(s), que em geral são conhecidos pois são os pólos de malha aberta. Também para fazer o mapeamento precisamos conhecer os zeros de 1+G(s)H(s), que são os pólos de malha fechada. No entanto se eu conhecer estes zeros meu problema da estabilidade já esta resolvido e não preciso aplicar critério nenhum.

25 Critério de Estabilidade de NYQUIST Desta forma a idéia é utilizar não o mapeamento de 1+G(s)H(s), mas sim de G(s)H(s) para a qual em geral eu conheço os pólos e zeros. Mas agora, para efeito de saber o número de pólos dentro do contorno escolhido que engloba todo o lado direito do plano s, não posso mais considerar envolvimentos da origem, mas sim o ponto -1, pois, na teoria do mapeamento de contornos somar uma constante a qualquer F(s) desloca o contorno mapeado para direita desta mesma constante.

26 Critério de Estabilidade de NYQUIST Desta forma, mapeando através de G(s)H(s), o contorno que engloba todo o semi-plano direito o número Z de pólos de malha fechada dentro deste contorno será igual o número de pólos de malha aberta do lado direito do plano s igual a P menos o número de voltas dadas no sentido anti-horário em torno do ponto -1. Z=P-N

27 Contorno envolvendo o semiplano da direita para determinar estabilidade plano s

28 Critério de Nyquist Se um contorno que envolve toda o semi-plano direito for mapeado através de G(s)H(s), então o número de pólos a malha fechada Z, no semi- plano direito é igual ao número de pólos de malha aberta P, que estão no semi-plano direito menos o número de rotações no sentido anti- horário N, em torno do ponto -1, isto é, Z=P-N. O mapeamento gerado é conhecido como diagrama de Nyquist, ou gráfico de Nyquist de G(s)H(s); N é positivo quando esta no sentido anti-horário em torno do ponto -1

29 Exemplos de mapeamento: a. o contorno não envolve os pólos a malha fechada; b. o contorno envolve os pólos a malha fechada

30 Exemplo

31


Carregar ppt "Diagrama de BODE Módulo em decibéis (dB) Fase em graus."

Apresentações semelhantes


Anúncios Google