A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

AULA 2 Função Afim Função Inversa Função Composta.

Apresentações semelhantes


Apresentação em tema: "AULA 2 Função Afim Função Inversa Função Composta."— Transcrição da apresentação:

1 AULA 2 Função Afim Função Inversa Função Composta

2 FUNÇÃO Seja f uma relação de A em B, dizemos que f é uma função de A em B se, e somente se, para todo elemento x A existir um só elemento y B, ou seja, y = f (x). A B f Domínio de f: D (f) = A Contradomínio de f: B Imagem de f: Im(f) C B

3 EXEMPLO Qual dos gráficos abaixo representa uma função de [-1,4] em R?

4 EXEMPLO Encontre o domínio das seguintes funções:

5 EXEMPLO Encontre o domínio e a imagem da seguinte função:

6 PARIDADE DE FUNÇÕES FUNÇÃO PAR f(x) = f(-x) Domínios opostos Imagens iguais FUNÇÃO ÍMPAR f(x) = - f(-x) Domínios opostos Imagens opostas

7

8 EXEMPLOS 1.O produto de duas funções ímpares é uma função par. Sejam f e g funções ímpares e h = f.g. Como f e g são funções ímpares, f(-x) = - f(x) e g (-x) = - g(x). h(x) = f(x). g(x) H(-x) = f(-x). g(-x) H(-x) = [- f(x)]. [- g(x)] H(-x) = f(x). g(x) H(-x) = h(x) Portanto, h é função par.

9 2. A soma de duas funções pares é uma função par. Sejam f e g funções pares e h = f + g. h(x) = f(x) + g(x) h(-x) = f(-x) + g(-x) h(-x) = f(x) + g(x) h(x) = h(x) Outra maneira: (par) + (par), por exemplo, x 2 + x 4. A soma das funções pares é uma função polinomial com expoentes pares. Portanto é uma função par.

10 3. A função f(x) = cosx + x 4 é uma função par. cosx + x 4 (par) + (par) = par VERDADEIRA.

11 FUNÇÕES INJETORAS, SOBREJETORAS E BIJETORAS

12 EXEMPLO

13 FUNÇÃO COMPOSTA Dados os conjuntos A, B e C e as funções f: A B definida por y = f (x) e g: B C definida por z = g(y), chama-se função composta de g com f a função h = (g o f) : A C, definida por: z = (g o f) (x) = g (f (x))

14 EXEMPLOS

15

16 FUNÇÃO INVERSA

17

18

19 EXEMPLOS 1. Dica para obter a inversa da função f do tipo:

20 2. Obtenha a inversa das seguintes funções:

21 3. Se f(x) = 3 – 5x, então f -1 (23) é igual a?

22 FUNÇÃO AFIM

23

24

25 EXEMPLO 1:

26 EXEMPLO 2:

27 EXEMPLO 3:

28

29

30 EXERCÍCIOS SELECIONADOS GRUPO 1


Carregar ppt "AULA 2 Função Afim Função Inversa Função Composta."

Apresentações semelhantes


Anúncios Google