A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

PI, o valor da razão entre a circunferência de qualquer círculo e seu diâmetro, é a mais antiga constante matemática que se conhece. E' também um dos.

Apresentações semelhantes


Apresentação em tema: "PI, o valor da razão entre a circunferência de qualquer círculo e seu diâmetro, é a mais antiga constante matemática que se conhece. E' também um dos."— Transcrição da apresentação:

1

2 PI, o valor da razão entre a circunferência de qualquer círculo e seu diâmetro, é a mais antiga constante matemática que se conhece. E' também um dos poucos objetos matemáticos que, ao ser mencionado, produz reconhecimento e ate mesmo interesse em praticamente qualquer pessoa alfabetizada. Apesar da antiguidade do nosso conhecimento do PI, ele ainda é fonte de pesquisas em diversas áreas. Com efeito, dentre os objetos matemáticos estudados pelos antigos gregos, há mais de anos, Pi é um dos poucos que ainda continua sendo pesquisado: suas propriedades continuam a ser investigadas e procura-se inventar novos e mais poderosos métodos para calcular seu valor, sendo que a divulgação desses resultados constitui uma das raras ocasiôes em que vemos a Matemática atingindo os meios de comunicação de massa.

3 PI está em todos os lugares O rolar das ondas numa praia, o trajeto aparente diário das estrelas no céu terrestre, o espalhamento de uma colônia de cogumelos, o movimento das engrenagens e rolamentos, a propagação dos campos electromagnéticos e um sem número de fenómenos e objetos, do mundo natural e da Matemática, estão associados às ideias de simetria circular e esférica. Ora, o estudo e uso de círculos e esferas, de um modo quase que inexorável, acaba produzindo o PI. Daí a ubiquidade desse número. Ele é uma das constantes universais da Matemática. É importante chamarmos a atenção para o fato que também são frequentes as ocorrências do PI em estudos onde aparentemente, principalmente para uma pessoa de pouca formação matemática, não estariam envolvidas simetrias circulares: na normalização da distribuição normal de probabilidades, na distribuição assintótica dos números primos, na construção de números primos próximos a inteiros dados ( na chamada constante de Ramanujan ), e mil e uma outras situações.

4 Em verdade, na Geometria Euclidiana, temos quatro constantes que poderiam ser chamadas de PI: o PI de circunferências: a constante de proporcionalidade na relação entre a circunferência de um círculo e seu diâmetro o PI de áreas de círculos: a constante de proporcionalidade na relação entre a área de um círculo e o quadrado de seu diâmetro o PI de áreas de esferas: a constante de proporcionalidade na relação entre a área de uma esfera e o quadrado de seu diâmetro o PI de volumes de esferas: a constante de proporcionalidade na relação entre o volume de uma esfera e o cubo de seu diâmetro Usando as fórmulas clássicas da Geometria, fica muito fácil expressarmos qualquer uma dessas constantes de proporcionalidade em termos das demais. Por questão de tradição, prefere-se trabalhar exclusivamente com o PI da circunferência de círculos, o qual é denotado internacionalmente pela letra pi minúsculo, a letra inicial da palavra grega peripheria que significa perímetro ou circunferência ( essa notação surgiu no início do sec e foi adotada e popularizada pelo importante livro Análise Infinitesimal, escrito por Euler c ).

5 Essa inquietação nao é só nossa. O famoso historiador matemático Abraham Seidenberg gastou muitos anos de sua vida vasculhando museus e lendo trabalhos de antropologia, em busca dos mais antigos indícios de envolvimento humano com círculos, esferas e o PI. O resultado desses estudos foi resumido nos seus artigos The ritual origin of the circle and square, Archiv. Hist. Exact Sc. 25, (1981), e principalmente em On the volume of a sphere, Archiv. Hist. Exact Sc. 39, (1988). Sua conclusão foi que o cálculo do volume da esfera em termos de seu diâmetro remontaria a antes de 2 000AC, sendo anterior a matemática das grandes antigas civilizações mesopotâmica, indiana, chinesa e egípcia. O historiador matemático B. van der Waerden identifica essa origem com o que chamo de Tradição Origem da Matemática e a localiza no Vale do Danúbio c AC. Segundo Seidenberg, nessa tradição também se teria reconhecido a igualdade da constante de proporcionalidade relacionando circunferência com diâmetro e área de círculo com quadrado do raio; ou seja, já nessa tradição, possivelmente lá por 3000 a 4000AC, se teria reconhecido que o "PI da circunferência" é igual ao "PI da área do círculo". Também é interessante observar que Seidenberg concluiu que a descoberta dessa igualdade usou métodos infinitesimais, ao estilo de Cavalieri.

6 Muitas pessoas acham que precisamos ter o valor do PI para calcular circunferência de círculos. Um exemplo clássico mostrando que isso NAO e' verdade e' o cálculo da circunferência da Terra por Erathostenes c. 250 AC. Ele mediu um arco de meridiano terrestre de 5000 estádios e, usando um instrumento de forma semi-esférica ( chamado skaphe ), verificou que esse arco de meridiano era proporcional a um arco de meridiano da skaphe, o qual media 1/50 do meridiano da esfera desse instrumento. Consequentemente, concluiu que o meridiano terrestre e' 50*5000 = estádios. Ou seja, em lugar nenhum precisou saber o valor do PI! Esse exemplo, e outros que poderiamos mencionar, mostram que é bastante surpreendente que a quase totalidade das pessoas ache que PI foi descoberto ao se relacionar circunferências com diâmetros dos respectivos círculos. Embora a definição usual do PI baseie-se na constância da razão circunferência : diâmetro, muito provavelmente não foi essa a origem do PI. Com efeito, é difícil imaginarmos situações práticas reais onde, numa civilização incipiente, alguém tenha precisado calcular a circunferência de um círculo de diâmetro conhecido, ou vice-versa. Muito mais naturais sao problemas requerendo achar a área de um campo circular em termos do diâmetro ou mesmo em termos da circunferência. Em verdade, devia-se até questionar se a descoberta do PI realmente ocorreu no contexto de círculos, e não no de esferas.

7 A aproximação mesopotâmica acima também aparece nos documentos da Tradição dos Altares ( matemática da India védica ). Com efeito, os Sulvasutras c. 400 AC fazem a quadratura do círculo tomando como quadrado de área equivalente a um círculo dado ao quadrado cuja diagonal e' 10/8 do diâmetro do círculo. Pede-se mostrar que essa regra ( sutra ) indiana corresponde a usar a aproximação de PI encontrada nas tabletas mesopotâmicas de Suse. Para fazer a quadratura ( = achar um quadrado de mesma área ) de um círculo dado, os egípcios usavam a seguinte regra prática: construa o quadrado cujo lado é o segmento que resulta ao cortarmos fora a nona parte do diâmetro do círculo dado. Obviamente, essa regra faz uma quadratura aproximada e equivale a tomar PI = 4 ( 8 / 9 )2 = Essa aproximação é muito difundida na literatura do ensino secundário e primário e tipicamente ela é citada ( erroneâmente ) como a mais antiga aproximação conhecida para o PI. Existem duas razões para a divulgação desse erro: o grosso da literatura histórica acessível aos professores do ensino primário e secundário é obsoleta, nem ao mesmo tomando conhecimento das pesquisas fundamentais de Neugebauer c sobre a matematica mesopotâmica; a outra razão é a perniciosa influência que as fantasias e deturpações da Etnomatemática tem tido no ensino elementar.

8 E' preciso que fique bem claro que o que o trabalho de Seidenberg achou na noite dos tempos, em bem remota antiguidade, foram apenas indícios indiretos de envolvimento com PI. Os mais antigos documentos concretos que temos e que tratam explícitamente de PI são tabletas mesopotâmicas de c AC, como a mostrada ao lado. Examinando a figura desenhada, fica fácil ver que a mesma corresponde a adotar a aproximação grosseira PI = 3, que é a mais comum das aproximações para PI que encontramos nos documentos mesopotâmicos. Neugebauer, em seu livro Mathematical Cuneiform Texts, traduziu vários problemas de tabletas mesopotâmicas envolvendo aproximação do PI. Esses problemas pedem para obter a área A de um círculo a partir do conhecimento da circunferência do mesmo, usando-se a regra: A = 5/60 C2 Pede-se mostrar que isso equivale a usar PI = 3. Por muito tempo, achava-se que a única aproximação do PI usada pelos mesopotâmicos era a PI = 3. Essa visão foi destruída, em 1 950, quando o historiador matemático E. M. Bruins traduziu várias tabletas encontradas em Suse e datadas de c AC. Os problemas dessas tabletas pediam para calcular a área de um campo circular de diâmetro dado, e para tal usavam a aproximação ( em base sexagesimal ): PI = 3; 7, 30 = 3 + 7/ /602, o que equivale ( verifique ) a dizer PI = 3 15/120 = 3 1/8 =

9 Para fazer a quadratura ( = achar um quadrado de mesma área ) de um círculo dado, os egípcios usavam a seguinte regra prática: construa o quadrado cujo lado é o segmento que resulta ao cortarmos fora a nona parte do diâmetro do círculo dado. Obviamente, essa regra faz uma quadratura aproximada e equivale a tomar PI = 4 ( 8 / 9 )2 = Essa aproximação é muito difundida na literatura do ensino secundário e primário e tipicamente ela é citada ( erroneâmente ) como a mais antiga aproximação conhecida para o PI. Existem duas razões para a divulgação desse erro: o grosso da literatura histórica acessível aos professores do ensino primário e secundário é obsoleta, nem ao mesmo tomando conhecimento das pesquisas fundamentais de Neugebauer c sobre a matematica mesopotâmica; a outra razão é a perniciosa influência que as fantasias e deturpações da Etnomatemática tem tido no ensino elementar. Embora essa aproximação egípcia para o PI não seja a mais antiga e nem a mais exata entre as conhecidas na Antiguidade, ela corresponde a uma regra muito simples, prática e razoavelmente precisa. Mais importante e interessante é perguntar como os egípcios descobriram tal regra. Inúmeros historiadores investigaram essa questão e, talvez, quem mais detalhadamente a estudou foi Paulus Gerdes, no trabalho: Three alternate methods of obtaining the ancient Egyptian formula for the area of a circle, in Historia Math. 12 ( ), n.3. Nesse trabalho, o Prof. Gerdes apresenta três tentativas de reconstrução do método de descoberta pelos egípcios, sendo que passaremos a explicar a mais plausível delas, a que envolve um procedimento comum entre os construtores egípcios: o método dos discos metálicos.

10 Euclides encerrou o Livro XII de seus Elementos sem tratar da questão da área da esfera. ( Coube a Archimedes c. 250 AC mostrar que a razão entre as áreas de esferas é igual à razão entre os quadrados de seus diâmetros ). Mas o mais curioso é que em nenhum dos treze livros dos Elementos Euclides fala no PI da circunferência. Coube a Archimedes a tarefa de ir mais longe do que Euclides demonstrando a existência dos PI's que esse não abordou e estabelecendo resultados que permitem facilmente relacionar os quatro tipos de PI: o PI das circunferências, o PI de áreas de círculos, o PI de áreas de esferas e o PI de volumes de esferas. Para levar a cabo esse Projeto PI, Archimedes precisou completar o conhecimento exposto nos Elementos de Euclides, descobrindo e demonstrando os seguintes três teoremas:

11 Quem pela primeira vez provou rigorosamente a existência do PI? Bem, essa pergunta talvez nunca possa ser respondida. Que eu saiba, a mais antiga referência que temos de uma demonstração da existência do PI fala de Hippokrates de Chios, c. 430 AC. Trata-se de uma nota de Simplicius, filósofo grego que viveu quase mil anos depois de Hippokrates. Simplicius, no seu Comentário sobre o livro Physis, de Aristóteles, menciona que Eudemos na sua História da Geometria ( escrita c. 330 AC e, hoje, há muitos séculos totalmente perdida ) diz que Hippokrates demonstrou que a razão entre as áreas de círculos é igual à razão entre os quadrados dos respectivos diâmetros. Por outro lado, o mais antigo documento ainda existente e que traz demonstração da existência do PI é o livro Elementos de Euclides, escrito em c. 300 AC. Na proposição 2 do Livro XII dos Elementos, Euclides enuncia e prova que círculos estão um para o outro assim como os quadrados de seus diâmetros, que é o resultado atribuído acima a Hippokrates. Ademais, na proposição 18 desse Livro XII, Euclides enuncia e prova que esferas estão uma para a outra assim como a razão tríplice de seus diâmetros.

12 Como se sabe p ( pi ), é o número mais famoso da história universal, o qual recebeu um nome próprio, um nome grego, pois embora seja um número, não pode ser escrito com um número finito de algarismos. O p representa a razão entre o perímetro do círculo e seu diâmetro. O número p tem uma história fascinante, que começou acerca de 4000 anos atrás. Antes de mais é importante focar que na história do p, um dos passos fundamentais, consistiu em adquirir consciência da constância da razão entre o perímetro e o diâmetro de qualquer círculo, pois sem esta consciência nunca se teria calculado o p. Inúmeros povos andaram à sua procura mesmo antes que chegassem a ter consciência matemática. O número pi (representado habitualmente pela letra grega p ) é o irracional mais famoso da história, com o qual se representa a razão constante entre o perímetro de qualquer circunferência e o seu diâmetro. Se pensarmos que ao dar a volta à Lua seguindo um dos seus círculos máximos, percorremos aproximadamente Km e se dividirmos este valor pelo diâmetro da Lua que é 3476 Km iremos verificar que esta razão é de 3, …, este número é- nos familiar, é aproximadamente 3,14.

13 Arquimedes de Siracusa ( a.C. ), pôs mãos à obra com expedientes novos, muito mais profundos. Sabia que p não era racionalmente determinável, ou, ao menos, o suspeitava. Assim sendo, propôs-se descobrir um processo para a determinação de p, o Método de Arquimedes, com a precisão que se desejasse. Este usou, processos geométricos, complicados mas gerais, que dão limites inferiores e superiores para p. Arquimedes utilizou alguns polígonos regulares, com um número crescente de lados, até chegar ao polígono de 96 lados, através do qual obteve a seguinte aproximação de p, < p < Descobriu-se recentemente que, no ano 480 de nossa era, um certo engenheiro hidráulico de nome Tsu Chung- Chi ( d.C. ), chegou a um valor de p extraordinariamente preciso, considerada a época em que foi calculado. O p de Tsu Chung- Chi, em nossa notação décimal, oscilaria entre e Ignoramos como é que ele chegou a este resultado. A época do Renascimento Europeu trouxe, na altura devida, um novo mundo matemático. Entre os primeiros efeitos deste renascer está a necessidade de encontrar uma fórmula para o p. Descobriu-se então a definição não geométrica de p e do papel "não geométrico" deste valor. Assim se chegou à descoberta das representações de p por séries infinitas. Um dos primeiros foi Wallis ( ) com a fórmula.

14 A série de Gregory converge lentamente, de tal forma que se pretendermos obter quatro casas decimais correctas temos que ter cerca de termos da série. Esta fórmula é mais apropriada para o cálculo computacional do que para o cálculo humano. Contudo Gregory também demonstrou um resultado mais geral, Image31.gif (1250 bytes) -

15 A razão entre o perímetro de um círculo e o seu diâmetro produz o número PI. É um número que mobilizou e ainda mobiliza muitos matemáticos. A principal curiosidade, no caso do PI, é a obtenção de um valor sempre igual e constante, adicionando-se também um mistério: o de não podermos conhecer a última casa. Por esse motivo, o PI passou a ser representado pela letra (do alfabeto grego). Foi uma estratégia para simplificar o registro. Voltando ao procedimento matemático, que produziu essa misteriosa constante, poderemos igualar as razões entre os perímetros dos círculos e os seus respectivos diâmetros. Essa proporcionalidade permite escrever que o perímetro de uma roda gigante, dividido pelo seu diâmetro, é igual ao perímetro de uma moeda dividido pelo diâmetro dessa mesma moeda:

16 Na Babilônia, o valor do era considerado igual a três e hoje podemos escrevê-lo com muitas casas depois da vírgula, com as reticências informando que ele não terminou - e não terminará: 3, Nos livros didáticos, esse número é arredondado para 3,1416 ou 3,14, permitindo cálculos aproximados. No entanto, não podemos esquecer que nunca poderemos afirmar que o valor do é igual a 3,14. Por isso, é essencial que, no cálculo do perímetro, a letra grega apareça para evitar erros:

17 O número pi (representado habitualmente pela letra grega p ) é o irracional mais famoso da história, com o qual se representa a razão constante entre o perímetro de qualquer circunferência e o seu diâmetro. Se pensarmos que ao dar a volta à Lua seguindo um dos seus círculos máximos, percorremos aproximadamente Km e se dividirmos este valor pelo diâmetro da Lua que é 3476 Km iremos verificar que esta razão é de 3, …, este número é- nos familiar, é aproximadamente 3,14. Na realidade, como número irracional, pi é expresso por uma dizima infinita não periódica, que nos dias de hoje com a ajuda dos computadores já é possivel determinar com centenas de milhões de casa decimais. Aqui aparecem as primeiras cinquenta : p = 3,

18


Carregar ppt "PI, o valor da razão entre a circunferência de qualquer círculo e seu diâmetro, é a mais antiga constante matemática que se conhece. E' também um dos."

Apresentações semelhantes


Anúncios Google