A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 Restrições Lineares sobre os Reais/Racionais Muitos problemas podem ser modelados através de variáveis reais (ou racionais), denominadas variáveis de.

Apresentações semelhantes


Apresentação em tema: "1 Restrições Lineares sobre os Reais/Racionais Muitos problemas podem ser modelados através de variáveis reais (ou racionais), denominadas variáveis de."— Transcrição da apresentação:

1 1 Restrições Lineares sobre os Reais/Racionais Muitos problemas podem ser modelados através de variáveis reais (ou racionais), denominadas variáveis de decisão. Todas as restrições sobre essas variáveis são lineares. Geralmente pretendem-se soluções que optimizem uma função (linear) objectivo - optimização condicionada Exemplos: gestão da produção redes de distribuição

2 2 Gestão da Produção Dados: a)Um conjunto de itens P 1,..., P n que se pretende produzir b)Um conjunto de recursos R 1,..., R m disponíveis para os produzir c)Uma matriz A, cujos elementos a ij representam a quantidade do recurso i necessário para produzir uma unidade do item j d)Um vector C, cujos elementos c j representam o lucro obtido por cada unidade do item j produzido e)Um vector B, cujos elementos b i representam a quantidade máxima do recurso i que pode ser utilizado Objectivo: Determinar a quantidade a produzir de cada item j

3 3 Gestão da Produção Gestão 0: Restrições Base Designando por X i a quantidade do item P i produzido, o problema de não sobre-utilização dos recursos existentes é modelado por a 11 X 1 + a 12 X a 1n X n =< b 1... a m1 X 1 + a m2 X a mn X n =< b m Por exemplo, sendo necessárias 3 minutos de uma máquina para fabricar 1 sapato e 4 minutos para 1 bota, representando por S e B o número de sapatos e botas e estando a máquina disponível 4 minutos temos 3 S + 4 B =< 240

4 4 Gestão da Produção Gestão 1: Satisfação (de um dado lucro) Para modelar que um dado lucro L é atingido, adiciona-se ao modelo anterior a restrição c 1 X 1 + c 2 X c n X n >= L Por exemplo, se se obtem um lucro de 4(5) por cada sapato (bota) vendido, pretender que o lucro seja pelo menos de 3000 é modelada pela restrição Max L = 3 S + 4 B Gestão 2: Optimização (do lucro obtido) Para modelar a maximização do lucro obtido, adiciona-se ao modelo inicial a função objectivo L (a maximizar) Max L = c 1 X 1 + c 2 X c n X n

5 5 Gestão da Produção (Dual) Dados: a)Um conjunto de itens P 1,..., P n que se pretende produzir b)Um conjunto de recursos R 1,..., R m disponíveis para os produzir c)Uma matriz A, cujos elementos a ij representam a quantidade do recurso i necessário para produzir uma unidade do produto j d)Um vector C, cujos elementos c j representam o custo mínimo por cada unidade do item j produzido e)Um vector B, cujos elementos b j representam a quantidade do recurso j a utilizar Objectivo: Determinar os custos por recurso adequados

6 6 Gestão da Produção (Dual) Gestão 0d: Restrições Base Designando por Y j o custo incorrido por cada unidade do recurso j gasto, as restrições que impõe um custo mínimo por unidade de item i produzido são modeladas por a 11 Y 1 + a 21 Y a m1 Y m >= c 1 a 12 Y 1 + a 22 Y a m2 Y m >= c 2... a 1m Y 1 + a 2m Y a mn Y m >= c n

7 7 Gestão da Produção (Dual) Gestão 1d: Satisfação (de um dado custo total) A garantia de que o custo total do plano de produção não excede um valor V é modelada, por adição ao modelo da restrição b 1 Y 1 + b 2 Y b m Y m =< V Gestão 2d: Optimização (do custo total) Para modelar a minimização dos custo total do plano de produção, adiciona-se a função objectivo V (a minimizar) Min V = b 1 Y 1 + b 2 Y b m Y m

8 8 Redes de Distribuição Dados: a)Um conjunto de nós P 1,..., P n, dos quais P 1 é emissor e P n o receptor b)Uma matriz M, cujos elementos m i,j representam a capacidade da ligação (em bits/seg) entre os nós i e j c)Uma matriz C, cujos elementos c i,j representam o custo (em /bit) da transmissão entre os nós i e j; Objectivo: Avaliar o fluxo de informação que a rede é capaz de transmitir entre os nós emissor (P 1 ) e receptor (P n ).

9 9 Redes de Distribuição Restrições Base: Designando por X i,j a quantidade de informação debitada entre os nós i e j, as restrições de capacidade são X 1,1 =< m 1,1 % Em geral m i,i = 0... X m,n =< m m,n As restrições de igualdade de fluxo de entrada e saída em todos os k nós (excepto nos nós P 1 e P n ) são modeladas por X 1,2 +X 2,2 +X 3, X n,2 = X 2,1 +X 2, X 2,n X 1,3 +X 2,3 +X 3, X n,3 = X 3,1 +X 3, X 3,n... X 1,k +X 2,k +X 3,k +...+X n,k = X k,1 +X k, X k,n

10 10 Redes de Distribuição Redes 1: Satisfação (de um fluxo F entre P 1 e P n ) A verificação de que é possível transmitir um determinado fluxo de informação F entre os nós emissor (P 1 ) e receptor (P n ) é modelada pela adição da restrição X 1,2 +X 1,3 +X 1, X 1,n >= F (ou X 1,n +X 2,n +X 3,n +...+X n-1,,n >= F ) Redes 2: Optimização (do custo total) Para modelar o máximo fluxo de informação que a rede é capaz de transmitir entre os nós P 1 e P n, adiciona-se a função objectivo F (a minimizar) Max F = X 1,2 +X 1,3 +X 1, X 1,n

11 11 Formalização Os problemas de satisfação de restrições lineares sobre variáveis (de decisão) X i reais (ou racionais, se todos os parâmetros a ij são números racionais) têm a forma a 11 X 1 + a 12 X a 1n X n ρ 1 b 1 a 21 X 1 + a 22 X a 2n X n ρ 2 b 2... a m1 X 1 + a m2 X a mn X n ρ m b m em que ρ 1.. ρ m são quaisquer do conjunto {, =,,, } Se se pretender a optimização das variáveis de decisão, inclui-se a optimização de uma função (linear) objectivo F Opt F = c 1 X 1 + c 2 X c n X n em que Opt pode ser um de {Max, Min, Sup, Inf}.

12 12 Interpretação Geométrica Dado um espaço com n dimensões, a restrição a i1 X 1 + a i2 X a in X n = b i define uma região admissível, correspondente aos pontos de um hiper-plano desse espaço. Como casos particulares temos um espaço tridimensional (n=3), em que o hiper-plano corresponde ao plano usual, e um espaço bidimensional (ou vulgar plano, n=2) em que o hiper-plano se reduz a uma recta. A restrição define uma região admissível que corresponde a todos os pontos do espaço n-dimensional, excepto os pontos do hiper-plano

13 13 Interpretação Geométrica As restrições e definem regiões admissíveis do tipo semi-hiper-espaço limitado pelo correspondente hiper- plano, incluído na região admissível. Com n=3 temos um semi-espaço e com n=2 um semi-plano. As restrições definem regiões admissíveis semelhantes, mas excluindo a fronteira. O conjunto de restrições define, num espaço a n dimensões, um hiper-poliedro (poliedro com n=3 e polígono com n=2) correspondente à intersecção das m regiões admissíveis (m+n com não negatividade). Algumas faces do hiper-poliedro pertencem ({, ) à região admissível e outras não ( ). Devem ainda ser considerados hiper-planos de exclusão ().

14 14 Interpretação Geométrica Com exclusão das restrições, a região admissível é convexa. Em problemas de optimização a função C = c 1 X 1 + c 2 X c n X n define uma família de hiper-planos paralelos (um para cada valor de C). O supremo e o ínfimo dessa função na região admissível corresponde a um (hiper-)vértice do hiper-poliedro, o último ponto em que um hiper-plano da função objectivo toca a região admissível quando se desloca para valores crescentes (Sup) ou decrescentes (Inf) de C.

15 15 Interpretação Geométrica Se esse vértice pertencer à região admissível ele corresponde igualmente ao seu Max ou Min Caso contrário (i.e. se foi excluído por alguma restrição >, < ou ) não existem Max/Min mas apenas Sup/Inf. No caso em que o vértice de óptimo pertence a uma aresta ou um lado do hiper-poliedro paralelos à família de hiper-planos de optimização, haverá em geral mais do que um ponto óptimo, já que a função objectivo tem o mesmo valor em todos os pontos dessas arestas e lados.

16 16 Exemplo (2 dimensões) max X1 + X2 Suj.2 X1 + X2 8 X1 + X2 3 X1 - X2 -5 X2 0 X2X2 x1x1 2 X1 + X2 8 X1 - X2 -5 X1 0 X1 + X2 3 X1 + X2 = k

17 17 Complexidade Potencial Apesar de o espaço de pesquisa ser infinito, o problema de satisfação reduz-se à verificação de que as restrições definem um hiper-poliedro não vazio. Assim, pelo menos um dos vértice definidos pelos hiper- planos de fronteira das restrições (excepto restrições ) deve pertencer à região admissível. Como n restrições de igualdade num espaço n-dimensional definem univocamente um ponto (solução de um sistema de n equações a n incógnitas), no pior caso, ter-se-á de verificar a pertença à região admissível de C m n pontos. Na prática, o número de vértices a testar é muito inferior. No pior caso, a complexidade do problema de satisfação é idêntica a um problema de optimização.

18 18 Formas Resolvidas Há pois que determinar uma forma expedita de representar os vértices, e pesquisem eficientemente se pertencem à região admissível. Em particular, estaremos interessados em algoritmos que Associem vértices a uma Forma Resolvida, ou simbólica (algébrica). implementem a pesquisa através de um conjunto de manipulações algébricas. A associação deverá ser possível se e apenas se o conjunto de restrições inicial fôr satisfazível. Vamos abordar estas formas resolvidas para sistemas de restrições com riqueza de expressão crescente.

19 19 Restrições Não-Estritas / Variáveis Não-negativas As restrições de desigualdade podem ser substituidas por restrições de igualdade através da adição de variáveis de desvio (slacks), igualmente não negativas a i1 X a in X n b i a i1 X a in X n + S i = b i a i1 X a in X n b i a i1 X a in X n - S i = b i A existência de uma forma resolvida para estes sistemas de restrições é justificada pelo seguinte Lema 1: Todo o sistema de m equações a m+n incógnitas não negativas, é satisfazível sse admitir uma solução em que n variáveis são nulas. Demonstração (Lema 1) Se existe uma solução então o sistema é satisfazível.

20 20 Lema 1 (exemplo) Um exemplo permite perceber melhor os passos desta demonstração. Considere-se o sistema de 2 equações a 4 incógnitas (isto é, m=2 e n+1=2) (S1)3X 1 –2X 2 + X 3 - X 4 = 4 X 1 + X 2 -2X 3 + X 4 = 2 que admite a solução não negativa =. Fazendo X 4 = 1- δ obtemos o sistema S2 (S2)3X 1 –2X 2 + X 3 = 5 - δ X 1 + X 2 -2X 3 = 1 + δ Para toda a solução deste sistema existe uma solução de S1. Pela hipótese de indução todo o sistema de m equações a m+n incógnitas (isto é, 2 equações a 3 incógnitas) tem uma solução com n variáveis nulas.

21 21 Lema 1 (exemplo) Este é o caso de S2 que admite de facto a solução. Assim o sistema S2 tem um sistema equivalente (S5)X 1 = 11/7 + 3/7 X 2 – 1/7 δ X 3 = 2/7 + 5/7 X 2 – 4/7 δ Assumindo X 2 = 0, considere-se o sistema (S6)X 1 = 11/7 – 1/7 δ X 3 = 2/7 – 4/7 δ Para qualquer solução de S6 existe uma solução do sistema inicial S1. Para δ =1/2, X 3 anula-se, obtendo-se outra solução de S6 ( ) a que corresponde a solução, de S1 que, como se pretendia, tem n+1=2 variáveis nulas.

22 22 Lema 1 (1) A demonstração é feita por indução em n. Sendo o caso n=0 trivial, falta demonstrar o passo de indução, ou seja, se qualquer sistema de m equações a n variáveis não negativas tem uma solução com n variáveis nulas, então qualquer sistema de m equações a n+1 variáveis não negativas tem uma solução com n+1 variáveis nulas. Consideremos um sistema satisfazível com m+n+1 variáveis (S1) a i,1 X a i,m+n X m+n +a i,m+n+1 X m+n+1 = b i i: 1..m Se o sistema é satisfazível, existe uma solução X i = w i ( 0 para i: 1..m+n+1). Substituindo X m+n+1 por X m+n+1 = w m+n+1 -δ (S2) a i,1 X a i,m+n X m+n = c i +a i,m+n+1 δ (c i =b i -a i,m+n+1 w m+n+1 ) Uma solução deste sistema com δ =0 é uma solução do sistema S1 com X m+n+1 = w m+n+1. Assim, o sistema (S3) a i,1 X a i,m+n X m+n = c i é satisfazível (admite a solução inicial X i = w i )

23 23 Lema 1 (2) Ora tendo este sistema, satisfazível, m equações e m+n variáveis, pela hipótese de indução, deve ter uma solução com n variáveis nulas. Sem perda de generalidade, considere-se que são as últimas n variáveis que se anulam, nessa solução, isto é, que existe uma solução X i = d i 0 para i: 1..m e X m+j = 0 para j : 1, n Desta forma, o sistema S3 pode reescrever-se na forma (S4) X i = d i + c i,m+1 X m c i,m+n X m+n Algebricamente, S4 é obtido de S3 por combinação linear das suas linhas. Aplicando a mesma combinação linear, não a S3 mas a S2, obtemos o sistema (S5) X i = d i + c i,m+1 X m c i,m+n X m+n + c i,m+n+1 δ Sendo obtido por uma combinação linear de S2, S5 é equivalente a S2. Assim, qualquer solução de S5 com δ =0 é uma solução do sistema inicial (S1), com X m+n+1 = w m+n+1.

24 24 Lema 1 (3) Se considerarmos apenas as soluções com as n variáveis X m+j (j: 1..n) nulas o sistema S5 pode ser reescrito como (S6) X i = d i + c i,m+n+1 δ Assim, qualquer solução deste sistema S5, corresponde a uma solução do sistema S1 em que X i = d i + c i,m+n+1 δ i : 1..m; X m+j = 0 j : 1..n; e X m+n+1 = w i -δ Desta forma o sistema S1 inicial de m equações a m+n+1 variáveis tem uma solução com n variáveis nulas (todas as variáveis X m+j com j: 1..n). Se algum dos d i s ou se w i fôr nulo, então basta fazer δ=0 para obter uma solução de S1 com n+1 variáveis nulas: as anteriores mais X i (i: 1..m) ou X m+n+1.

25 25 Lema 1 (4) X i = d i + c i,m+n+1 δ i : 1..m; X m+n+1 = w i -δ No caso mais geral, em que os d i s e w i são estritamente positivos, pode obter-se uma nova solução para um valor de δ > 0 e que garanta d i + c i,m+n+1 δ i = 0para um i : 1..m; ou δ m+n+1 = w i No menor destes valores δ i, S6 tem uma solução com uma variável nula. Mas então o sistema S1 tem uma solução com n+1 variáveis nulas: para além da variável correspondente de S6, todas as variáveis X m+j (j: 1..n) são nulas, o que prova o teorema.

26 26 Forma Resolvida SF0 Definição: Dado um sistema de equações de m equações a m+n incógnitas (S1) a i,1 X a i,m+n X m+n = b i (i: 1..m) a sua forma resolvida SF0 tem a forma (SF0) X i = d i + c i,m+1 X m c i,m+n X m+n sendo d i 0 i: 1..m As variáveis no lado esquerdo são as variáveis básicas, sendo as outras as não básicas (as variáveis básicas podem ser quaisquer e não as primeiras m variáveis como são apresentadas para simplificar a notação). O lema anterior permite justificar o seguinte teorema.

27 27 Forma Resolvida SF0 Teorema: Um sistema de equações de m equações a m+n variáveis não-negativas é satisfazível sse se puder rescrever na forma SF0. Demonstração Se se pode reescrever na forma resolvida SF0, então o sistema admite a solução não negativa,. Dado o sistema satisfazível (S1) a i,1 X a i,m+n X m+n = b i (i: 1..m) o lema anterior garante uma solução, que permite a forma SF0 (SF0)X i = d i + c i,m+1 X m c i,m+n X m+n com d i 0 para i: 1..m através de uma combinação linear das suas equações.

28 28 Interpretação Geométrica Dadas R3: 2X1 + X2 8 ; R4: X1 + X2 3 ; R5: X1 - X2 -5, a região admissível é constituída pela intersecção das sub-regiões definidas pelos conjuntos de restrições {R3, R4}, {R3, R5} e {R4, R5}. X2X2 X1 2 X1 + X2 + X3 = 8 X1 - X2 - X5 = -5 X1 + X2 - X4 = 3

29 29 Na realidade, pretendendo-se a não-negatividade de X1 e X2, deverão ser consideradas mais 2 restrições R1: X1 0 e R2: X2 0 A região admissível é constituída pela intersecção das sub-regiões definidas pelos 10 conjuntos de restrições {R1, R2}, a {R4, R5}. Interpretação Geométrica X2 = 0 X2X2 2 X1 + X2 = 8 X1 - X2 = -5 X1 = 0 X1 + X2 = 3 X1

30 30 Cada uma das rectas correspondentes a uma restrição pode ser identificada pelo anulamento da correspondente variável de desvio. Interpretação Geométrica X2 = 0 X2 X1X1 X3 = 0 X5 = 0 X1 = 0 X4 = 0 2 X1 + X2 = 8 X1 - X2 = -5 X1 + X2 = 3 2X1 + X2 8 2 X1 + X2 + X3 = 8 X1 - X2 -5 X1 - X2 - X5 = -5 X1 + X2 3 X1 + X2 - X4 = 3

31 31 Restrições Racionais A questão que se coloca agora é como garantir a passagem eficiente de um conjunto de restrições lineares sobre variáveis não negativas para essa forma resolvida SF0, sem escolha arbitrária dos vértices. Por outro lado, se se pretender a integração dum resolvedor de restrições simbólicos num sistema de programação em lógica (CLP) esse resolvedor deve ser incremental. Há que definir um procedimento para efectuar essa transformação incremental. Esse procedimento é esencialmente baseado no algoritmo SIMPLEX.

32 32 Ora como cada restrição é limitada pelo anulamento de uma das variáveis de desvio, o ponto de intersecção de rectas correspondentes a duas restrições é obtido pelo anulamento das respectivas variáveis de desvio. Por outro lado, as m equações a m+2 variáveis podem ser reescritas de forma a que m variáveis (as variáveis básicas) venham definidas em relação às outras duas. Considerando essas duas (não-básicas) como variáveis de desvio, o seu anulamento determina o valor das outras variáveis no ponto de intersecção das rectas correspondentes a essas variáveis de desvio. Interpretação Geométrica

33 33 Por exemplo, dadas as restrições anteriores R3: 2X1 + X2 8 ; R4: X1 + X2 3 ; R5: X1 - X2 -5 e reescrevendo-as como R3: 2X1 + X2+ X3 = 8 ; R4: X1 + X2 -X4 = 3 ; R5: X1 - X2 -X5 = -5 considerando a base { X1, X2 e X4 } elas podem ser reescritas como X1 = 1 - X3/3 + X5/3 X2 = 6 - X3/3 - 2 X5/3 X4 = X3/3 - X5/3 sendo X1 =1, X2 = 6 e X4 =4 o ponto onde se intersectam as restrições R3 e R5 (isto é, com desvios X3 e X5 nulos). Interpretação Geométrica

34 34 Havendo m restrições e m+2 variáveis, o número de potenciais vértices da região admissível é o número de combinações de m+2 variáveis 2 a 2, isto é, (m+2)*(m+1)/2. No caso que temos vindo a exemplificar, m=3 donde o número de potenciais vértices é 10. Na realidade, nem todos os pontos resultantes da intersecção das rectas estão dentro da região admissível. Um vértice não está na região admissível se no ponto correspondente, algumas das variáveis tomarem valores negativos. Interpretação Geométrica

35 35 Interpretação Geométrica 2 X1 + X2 8 X1 + X2 3 X1 - X2 -5 X1, X2 0 2 X1 + X2 + X3 = 8 X1 + X2 - X4 = 3 X1 - X2 - X5 = -5 X2 = 0 X2 X1X1 X3 = 0 X5 = 0 X1 = 0 X4 = 0 X3 = X1 - X2 X4 = -3 + X1 + X2 X5 = 5 + X1 - X2 x1 = 1 - x3/3 + x5/3 x2 = 6 - x3/3 - 2 x5/3 x4 = x3/3 - X5/3 X1 = 5 - X3 - X4 X2 = -2 + X3 + 2 X4 X5 = X3 - 3 X4 X2 = X1 - X3 X4 = 5 - X1 - X3 X5 = X1 + X3 X1 =-1 + X4/2 + X5/2 X2 = 4 + X4/2 - X5/2 X3 = X4/2 - X5/2 X2 = 5 + X1 - X5 X3 = X1 + X5 X4 = X1 - X5 X1 = 3 - X2 + X4 X3 = 2 + X2 - 2 X4 X5 = X2 + X4

36 36 A existência de soluções para o conjunto de restrições equivale a que a região admissível seja não vazia. Um problema em que nenhum vértice seja admissível é um problema sem solução. Por exemplo, se nas restrições anteriores se trocarem o sinal das restrições R3 e R4, o novo sistema R3: 2X1 + X2 8 R3: 2X1 + X2 -X3 = 8 R4: X1 + X2 3 ou R4: X1 + X2 +X4 = 3 R5: X1 - X2 -5R5: X1 - X2 -X5 = -5 corresponde a um problema que é impossível e não tem qualquer solução. Interpretação Geométrica

37 37 Interpretação Geométrica 2 X1 + X2 8 X1 + X2 3 X1 - X2 -5 X1, X2 0 2 X1 + X2 - X3 = 8 X1 + X2 + X4 = 3 X1 - X2 - X5 = -5 X2 = 0 X2 X1X1 X3 = 0 X5 = 0 X1 = 0 X4 = 0 X3 = X1 + X2 X4 = 3 - X1 - X2 X5 = 5 + X1 - X2 x1 = 1 + x3/3 + x5/3 x2 = 6 + x3/3 - 2 x5/3 x4 = x3/3 + x5/3 X1 = 5 + X3 + X4 X2 = -2 - X3 - 2 X4 X5 = X3 + 3 X4 X2 = X1 + X3 X4 = -5 + X1 - X3 X5 = X1 - X3 X1 = -1 - X4/2 + X5/2 X2 = 4 - X4/2 - X5/2 X3 = X4/2 + X5/2 X2 = 5 + X1 - X5 X3 = X1 - X5 X4 = X1 + X5 X1 = 3 - X2 - X4 X3 = -2 - X2 - 2 X4 X5 = X2 - X4

38 38 Para avaliar a satisfazibilidade de um problema basta pois verificar que pelo menos um dos potenciais vértices corresponde a uma solução. Mas isso corresponde a colocar o sistema de restrições na forma SF0. Por exemplo, o vértice admissível X1 = 1 - X3/3 + X5/3 X2 = 6 - X3/3 - 2 X5/3 X4 = X3/3 - X5/3 Corresponde à reescrita na forma SF0 do sistema inicial 2 X1 + X2 82 X1 + X2 - X3 = 8 X1 + X2 3 ou X1 + X2 + X4 = 3 X1 - X2 -5 X1 - X2 - X5 = -5 Passagem para a Forma Resolvida SF0

39 39 Para colocar um sistema de m restrições de igualdade a m+n variáveis (possivelmente proveniente de um sistema de m restrições de desigualdade ou ) na forma SF0, basta 1.Escolher m variáveis como variáveis básicas 2.Reescrever o sistema nessa base 3.Verificar se os coeficentes livres (valor das variáveis básicas quando as não básicas se anulam) são não negativos O problema desta abordagem é a existência de um número muito elevado ( ) de possibilidades de escolha da base. Passagem para a Forma Resolvida SF0 m+n m C

40 40 Há pois que definir uma estratégia para determinar quais as variáveis que devem entrar na base. Essa estratégia é fácil de entender se se pretender não apenas verificar a satisfação de um conjunto de restrições, mas ainda a optimização de uma função objectivo, que tal como as restrições seja linear. Assim, assumamos que, dado um conjunto de m restrições de igualdade nas variáveis X 1 a X m+n,, já colocado na forma SF0, se pretende adicionalmente maximizar (o caso da minimização é semelhante) uma função F = c 1 X 1 + c 2 X C m+n X m+n Optimização em SF0

41 41 max F = c 1 X 1 + c 2 X C m+n X m+n Sem perda de generalidade, consideremos que as primeiras m variáveis X 1 a X m são as variáveis básicas, isto é, que as restrições foram reescritas na forma SF0 X 1 = d 1 + c 11 X m c 1n X m+n... X m = d m + c m1 X m c mn X m+n Substituindo na função F as variáveis básicas pelas suas expressões nas não básicas obtemos max F = k + k 1 X m+1 + k 2 X m k n X m+n Optimização em SF0

42 42 max F = k + k 1 X m+1 + k 2 X m k n X m+n Esta expressão mostra que no vértice definido pelas variáveis básicas (com as não-básicas nulas) a função a maximizar tem o valor k. Mostra ainda que, se todos os coeficientes K i forem negativos, não se pode obter maiores valores de F. No caso de haver coeficientes K i positivos, um aumento da variável correspondente aumenta o valor da função F. Quanto maior o coeficiente, maior o aumento da função objectivo por aumento unitário da variável. Optimização em SF0

43 43 max F = k + k 1 X m+1 + k 2 X m k n X m+n Numa perspectiva de optimização, dada uma certa base admissível, para a qual existam valores K i positivos, o valor da função objectivo pode ser melhorado (ser maior que k) tornando positiva as correspondentes variáveis não básicas. Mas para mantermos o sistema na forma SF0, se se desanula uma variável não-básica, essa situação deverá ser compensada anulando uma das variáveis básica. Assim, a estratégia de optimização a seguir é a de, partindo de uma base admissível, proceder a um conjunto de mudanças de base até se poder reescrever a função objectivo com coeficientes não negativos. Optimização em SF0

44 44 Obviamente, uma mudança de base, envolve a escolha de a)uma variável não básica para entrar na base, e b)uma variável básica para sair da base, A escolha da variável de entrada pode seguir a heurística delineada atrás: A variável de entrada é aquela a que corresponde na função objectivo o coeficiente mais positivo (maximização) ou mais negativo (minimização). Uma vez escolhida a variável de entrada, ela deverá aumentar tanto quanto possível. No entanto, na forma SF0 corrente, um aumento dessa variável poderá conduzir à diminuição das variáveis básicas. Optimização em SF0

45 45 Com efeito, tome-se a forma SF0 abaixo e, sem perda de generalidade, considere-se X m+1 como variável de entrada. maxF = k + k 1 X m+1 + k 2 X m k n X m+n suj.X i = d i + c i1 X m c in X m+n i:1..m Mantendo as outras variáveis não básicas nulas, as equações reescrevem-se como X i = d i + c i1 X m+1 i:1..m Assim, sendo d i 0, um aumento de X m+1 anula as variáveis básicas (em que c i1 < 0), quando tomar o valor d i /|c i1 |. Como se pretende anular uma variável básica, mantendo as outras não negativas, a escolha da variável de saída recai na variável básica Xi para a qual seja menor o valor d i /|c i1 |. Optimização em SF0

46 46 Resumindo, a maximização da função objectivo de um sistema de m igualdades a m+n variáveis envolve a escrita do sistema e da função objectivo na forma SF0 maxF = k + k 1 X m+1 + k 2 X m k n X m+n suj.X i = d i + c i1 X m c in X m+n i:1..m e a execução do seguinte algoritmo Enquanto a função objectivo tiver coeficientes positivos mudar a base escolhendo como variável de entrada a variável não básica X j com coeficiente k j mais positivo na função objectivo como variável de saída a variável básica i com c ij < 0 e menor valor d i /|c ij | na respectiva restrição Optimização em SF0

47 47 Do ponto de vista geométrico, e como visto atrás, cada forma SF0 corresponde a um vértice da região admissível. Assim, ao trocar uma variável básica por outra não básica este algoritmo vai percorrendo vários vértices da região admissível, com valores crescentes da função objectivo. Por apenas trocarem uma variável, dois vértices consecutivos estão unidos por uma aresta do hiper-poliedro que representa a região admissível. Interpretação Geométrica

48 48 Exemplo. Interpretação Geométrica Max X 1 + 2X 2 R1: -X 1 + 3X 2 9 R2: X 1 + X 2 11 R3: 2X 1 + X 2 18 X 1,X 2 0

49 49 Exemplo. Interpretação Geométrica Max X 1 + 2X 2 -X 1 + 3X 2 + X 3 = 9 X 1 + X 2 + X 4 = 11 2X 1 + X 2 + X 5 = 18 X 1,X 2 0 Max X 1 + 2X 2 X 3 = 9 + X 1 - 3X 2 9/3 X 4 = 11 - X 1 - X 2 11/1 X 5 = X 1 - X 2 18/1 entra X 2, sai X 3

50 50 Max 6 + 5X 1 /3 - 2X 3 /3 X 2 = 3 + X 1 /3 - X 3 /3 9 X 4 = 8 - 4X 1 /3 + X 3 /3 6 X 5 = X 1 /3 + X 3 /3 45/7 entra X 1, sai X 4 Exemplo. Interpretação Geométrica Max X 1 + 2X 2 X 3 = 9 + X 1 - 3X 2 9/3 X 4 = 11 - X 1 - X 2 11/1 X 5 = X 1 - X 2 18/1 entra X 2, sai X 3

51 51 Max 6 + 5X 1 /3 - 2X 3 /3 X 2 = 3 + X 1 /3 - X 3 /3 X 4 = 8 - 4X 1 /3 + X 3 /3 X 5 = X 1 /3 + X 3 /3 entra X 1, sai X 4 Exemplo. Interpretação Geométrica Max 16 - X 3 /4 - 5X 4 /4 X 1 = 6 + X 3 /4 - 3X 4 /4 X 2 = 5 + X 3 /12- X 4 /4 X 5 = 1 -7X 3 /12+ 7X 4 /4 óptimo encontrado

52 52 Este algoritmo de optimização pressupõe que, no início, o conjunto de restrições foi reescrito na forma SFO, que era exactamente o objectivo que nos levou a abordar o problema da optimização! Na realidade, a colocação na forma SF0 não levanta qualquer problema quando as m restrições de igualdade a m+n variáveis provêm de um conjunto de m restrições de desigualdade a i 1 X 1 + a i 2 X a i n X n =< b i i: 1..m em que todos os b i são não negativos. Neste caso basta escolher as variáveis X 1 a X n para variáveis não básicas, pois o seu anulamento satisfaz as restrições! Optimização em SF0

53 53 Podemos ver agora como é que o algoritmo de optimização pode ser utilizado para colocar o sistema inicial na forma SFO, quando o anulamento das variáveis de decisão não constitui uma solução admissivel. Se essa é a situação, então temos uma (ou mais) restrição R i na forma X i = d i + c i1 X m c in X m+n em que o d i < 0. Nesta situação, podemos introduzir uma variável artificial não negativa, Z i, na restrição fazendo X i = Z i + d i + c i1 X m c in X m+n Passagem para a Forma Resolvida SF0

54 54 X i = Z i + d i + c i1 X m c in X m+n Como é óbvio, a restrição assim modificada e a inicial serão equivalentes sse Z i = 0. Reescrevendo a restrição modificada como Z i = - d i + c i1 X m c in X m+n - X i Obtem-se uma restrição que já se encontra na forma SF0, já que -d i > 0. Assim sendo, como uma solução admissível do sistema modificado é uma solução do sistema inicial se Z i = 0, tudo o que é necessário fazer é, no sistema modificado, minimizar Z i. Passagem para a Forma Resolvida SF0

55 55 Em geral, dado um conjunto m de restrições de igualdade a m+n variáveis, a passagem à forma SF0 pode fazer-se nos seguintes passos 1.Escolhem-se m variáveis para variáveis básicas, e reescreve-se o sistema isolando as variáveis básicas X i = d i + c i1 X m c in X m+n 2.Se todos os d i forem não negativos, o sistema está na forma SFO. Caso contrário, introduzem-se variáveis artificiais nas restrições adequadas, reescrevendo-as em Z i = - d i + c i1 X m c in X m+n - X i 3.Finalmente minimiza-se a soma das variáveis artificiais. Passagem para a Forma Resolvida SF0

56 56 Naturalmente, se o mínimo fôr 0, no ponto de mínimo todas as variáveis artificiais são nulas. Em princípio, as variáveis artificiais são não-básicas, e o sistema toma a forma X i = d i + c i1 X m c in X m+n +e i1 Z e iq Z q Em que os d i s são não negativos. O sistema inicial é equivalente ao modificados com as variáveis artificiais nulas. Assim o sistema inicial é equivalente ao sistema que se obtem eliminando no anterior os termos nas variáveis artificiais, e que já está na forma SF0 porque todos os d i s são não negativos. X i = d i + c i1 X m c in X m+n Passagem para a Forma Resolvida SF0

57 57 Na realidade alguma(s) das variáveis artificiais podem não ser não básicas obtendo-se restrições reescritas como Z q = 0 + c i1 X m c in X m+n +e i1 Z e iq-1 Z q-1 Neste caso, pode simplesmente trocar-se a variável Z i com um qualquer dos Xs não básicos obtendo-se, por exemplo X m+1 = 0 + c i1 X m c in X m+n +e i1 Z e iq Z q em que c ij = -c ij /c i1, e il = -e il /c i1 e e ik = -1/c i1. A substituição de Zq por Xm+1 nas outras restrições não vai afectar os termos livres (d i s) nelas existentes que serão simplesmente somados com 0. Passagem para a Forma Resolvida SF0

58 58 Ao introduzir-se uma variável artificial introduz-se uma nova dimensão no problema. Por exemplo se o problema inicial tinha duas dimensões, X e Y, pode considerar-se a nova variável como a 3ª dimensão, Z. O problema inicial, pode considerar-se a intersecção do problema estendido com o espaço inicial. Por exemplo, em 2D, o problema inicial é a intersecção do problema estendido (3D) com o plano X-Y. Embora para o problema inicial X i =0 não seja solução, no problema estendido, o ponto X i =0, Z > 0 é uma solução. A minimização de Z vai induzir um percurso no hiper- poliedro até atingir o espaço inicial (em 2D, o plano X-Y). Interpretação Geométrica

59 59 Exemplo Interpretação Geométrica -X 1 + 3X 2 + X 3 = 9 X 1 + X 2 + X 4 = 11 2X 1 + X 2 + X 5 = 18 X 1 + 2X 2 - X 6 = 12 -X 1 + 3X 2 9 X 1 + X X 1 + X 2 18 X 1 + 2X 2 12 X i 0 X 3 = 9 + X 1 - 3X 2 X 4 = 11 - X 1 - X 2 X 5 = 18 -2X 1 - X 2 X 6 = X 1 + 2X 2

60 60 Exemplo Interpretação Geométrica min Z 1 = 12 - X 1 - 2X 2 + X 6 X 3 = 9 + X 1 - 3X 2 X 4 = 11 - X 1 - X 2 X 5 = 18 -2X 1 - X 2 Z 1 = 12 - X 1 - 2X 2 + X 6 X 3 = 9 + X 1 - 3X 2 X 4 = 11 - X 1 - X 2 X 5 = 18 -2X 1 - X 2 X 6 = X 1 + 2X 2 + Z 1 Projecção no plano X 1 -X 2 do ponto =

61 61 Exemplo Interpretação Geométrica min 6 - 5X 1 /3 + 2X 2 /3 + X 6 X 2 = 3 + X 1 /3 - 3X 3 /3 X 4 = 8 - 4X 1 /3 + 3X 3 /3 X 5 = X 1 /3 + X 3 /3 Z 1 = 6 - 5X 1 /3 + 2X 3 /3 + X 6 min Z 1 = 12 - X 1 - 2X 2 + X 6 X 3 = 9 + X 1 - 3X 2 X 4 = 11 - X 1 - X 2 X 5 = 18 -2X 1 - X 2 Z 1 = 12 - X 1 - 2X 2 + X 6 Projecção no plano X 1 -X 2 do ponto =

62 62 Exemplo Interpretação Geométrica min Z 1 X 1 = 18/5 + 2X 3 /5 + 3X 6 /6 -3Z 1 /5 X 2 = 21/5 - X 3 /5 + X 6 /5 - Z 1 /5 X 4 = 16/5 - X 3 /5 - 4X 6 /5 +4Z 1 /5 X 5 = 33/5 - 3X 3 /5 - 7X 6 /5 +7Z 1 /5 min 6 - 5X 1 /3 + 2X 2 /3 + X 6 X 2 = 3 + X 1 /3 - 3X 3 /3 X 4 = 8 - 4X 1 /3 + 3X 3 /3 X 5 = X 1 /3 + X 3 /3 Z 1 = 6 - 5X 1 /3 + 2X 3 /3 + X 6 18/5 21/5 O ponto já está no plano X 1 -X 2

63 63 Restrições Não-Estritas / Variáveis Arbitrárias Se algumas das variáveis das restrições iniciais podem tomar valores reais/racionais arbitrários, tal como no caso anterior, substituem-se todas as desigualdades por igualdades com variáveis de desvio não negativas. Desta forma, um sistema de m restrições lineares com n variáveis é transformado num sistema de m equações a m+n variáveis. Algumas variáveis podem tomar um valor real arbitrário, enquanto outras (as variáveis de desvio e eventualmente algumas variáveis de decisão) só podem tomar valores não negativos. Para as distinguir, vamos renomear essas variáveis como Z e S, em número de z e s, respectivamente (z + s = m + n)

64 64 Restrições Não-Estritas / Variáveis Arbitrárias Se o número de variáveis reais não fôr inferior ao número de restrições (z m), (e sendo assumido que os coeficientes das variáveis das restrições são linearmente independentes, como será sempre assumido), o sistema é sempre possível. Com efeito, é sempre possível reescrever as equações isolando m variáveis arbitrárias (as variáveis básicas-Z; sem perda de generalidade, consideramos serem Z 1 a Z m,) Z i = c i +p i,m+1 Z m p i,z Z z + q i1 X q i,s X s Como as Z i são arbitrárias, uma solução é Z i = c i para i: 1..m Z i = 0 para i: m+1..z S i = 0 para i: 1..s

65 65 Restrições Não-Estritas / Variáveis Arbitrárias Havendo mais restrições m do que as z variáveis reais, podemos isolar os Z i em z das m restrições, obtendo Z i = c i + q i,1 S q i,s S s para i: 1..m Quaisquer que sejam os s i, não negativos, atribuídos às variáveis S i, estas restrições são satisfeitas já que é possível atribuir valores arbitrários às variáveis Z i. As restantes restrições constituem um conjunto de m-z equações a m-z+n variáveis não negativas. Como visto anteriormente, estas restrições são satisfazíveis sse se puderem reescrever na forma resolvida SF0. Assim, quando as restrições não estritas envolvem variáveis arbitrárias, pode definir-se uma forma resolvida SF1 por extensão de SF0.

66 66 Forma Resolvida SF1 (Igualdades) Definição: Um sistema de restrições de igualdade está na forma resolvida SF1 se as suas restrições se dividirem em dois conjuntos E a e E s definidos como: Se z m, E s é vazio e E a constituído por m equações Z i = d i +p i,m+1 Z m p i,z Z z +q i,1 S q i,s S s sendo as variáveis do lado esquerdo as variáveis básicas-Z, e todas as outras variáveis não básicas. Se z < m o conjunto E s é constituido por m-z equações S i = c i +r i,m-z+1 S m-z r i,s S s com c i 0 para i:1.. m-z em que as variáveis no lado esquerdo são variáveis básicas-S e as outras não básicas-S. E a é constituido por z equações Z i = d i +r i,m-z+1 S m-z r i,s S s em que as variáveis básicas-Z são definidas exclusivamente em função de variáveis não básicas-S.

67 67 Forma Resolvida SF1 (Igualdades) Exemplo: X2 X3 = 0 X5 = 0 X4 = 0 Eliminando-se o requisito de não negatividade de X1 e X2 as restrições admitem como forma resolvida SF1 X1 = 5 - X3 - X4 X2 = -2 + X3 + 2 X4 X5 = X3 - 3 X4 Ea:Ea: Es:Es: 2 X1 + X2 8 X1 + X2 3 X1 - X X1 + X2 + X3 = 8 X1 + X2 - X4 = 3 X1 - X2 - X5 = -5

68 68 Forma Resolvida SF1 (Igualdades) Teorema: Um sistema de m equações a m+n variáveis arbitrárias e/ou não negativas é satisfazível sse puder rescrever na forma SF1. Demonstração: Se um sistema se pode escrever na forma SF1 então é satisfazível Trivial. Anulando as variáveis não básicas obtem-se uma solução Se um sistema é satisfazível pode escrever-se na forma SF1. Escolham-se arbitrariamente as variáveis básicas-Z. Se z m, as m equações constituem o sistema E a (sendo E s vazio). Se z < m, então considerem-se z equações para formar E a. Nas restantes equações eliminando-se as variáveis arbitrárias (segundo E a ), obtem-se um sistema apenas em variáveis não-negativas. Se fôr satisfazível pode ser colocado na forma SF0, e corresponde ao conjunto E s.

69 69 Restrições Estritas / Variáveis Arbitrárias Se o conjunto de restrições envolver restrições estritas ( e ) é possível reescrever estas restrições em termos não só de igualdades mas também de desigualdades como indicado abaixo (em que os s i 0). a i1 X a in X n b i a i1 X a in X n + S i = b i a i1 X a in X n < b i a i1 X a in X n + S i = b i a i1 X a in X n b i a i1 X a in X n b i a i1 X a in X n - S i = b i a i1 X a in X n > b i a i1 X a in X n - S i = b i a i1 X a in X n b i Obtém-se desta forma um sistema de equações (=) e de disequações (), em que algumas (eventualmente todas as) variáveis são não negativas.

70 70 Restrições Estritas / Variáveis Arbitrárias As disequações são satisfazíveis sempre que as suas variáveis não sejam fixas (constantes). A conversão na forma resolvida SF1 permite verificar que o conjunto de equações é satisfazível, e definir as variáveis básicas em termos das variáveis não básicas. Em geral, as variáveis não-básicas aparecem no lado direito das equações de E a e E s, e podem tomar vários valores. Escrevendo as disequações exclusivamente em função das variáveis não básicas, elas serão satisfazíveis se contiverem pelo menos uma variável não fixa. Assim, devemos concentrar-nos nas equações, e verificar se elas impõem ou não a fixação de variáveis não básicas.

71 71 Restrições Estritas / Variáveis Arbitrárias Caso z m: Não havendo mais restrições que variáveis arbitrárias, basta escolher m variáveis arbitrárias para básicas, obtendo-se assim um conjunto E s vazio e E a constituído por m equações Z i = d i +p i,m+1 Z m p i,z Z z +q i,1 S q i,s S s Quaisquer valores arbitrários das variáveis não básicas-Z ( Z i com i: m+1.. z) e não-negativos das variáveis não básicas-S ( s j com j: 1.. s), conduzem a valores das variáveis básicas-Z dentro do seu domínio (arbitrário). Donde, se z m, as variáveis não básicas não são fixadas e as disequações são sempre satisfazíveis.

72 72 Restrições Estritas / Variáveis Arbitrárias Caso z < m: Neste caso todas as variáveis arbitrárias são básicas, originando um conjunto E a é constituido por z equações Z i = d i +r i,m-z+1 S m-z r i,s S s Uma vez obtido E a, continuam a existir m-z equações nas variáveis não-negativas. Assim, a análise da fixação de variáveis é análoga ao caso em que não há variáveis arbitrárias. Para simplificar a notação, vamos estudar o caso de um sistema de m equações a m+n variáveis não negativas.

73 73 Restrições Estritas / Variáveis Arbitrárias Consideremos pois um conjunto E s constituido por S i = c i +r i,m+1 S m r i,m+n S m+n c i 0 ( i:1.. m) No conjunto E s há que verificar se além dos valores nulos das variáveis não básicas-S S j (j: 1.. n), existem outros valores que não tornem negativas as variáveis básicas-S. Se todos os c i forem positivos, existem vizinhanças ε j de 0 para as variáveis não básicas-S que mantêm as variáveis básicas-S não negativas. Assim se todos os c i forem positivos não há variáveis não básicas-S (nem básicas-S) fixadas e, se existirem, as disequações existentes são satisfazíveis.

74 74 Restrições Estritas / Variáveis Arbitrárias Se alguns c i forem nulos, não há garantia de haver essas vizinhanças. Um exemplo permite clarificar este ponto. Exemplo: Verificar que, para S 1 e S 2 não negativos, são insatisfazíveis as restrições S 1 - S 2 0 ; S 1 - S 2 0 e S 1 - S 2 0 Reescrevendo as restrições como equações, obtem-se S 1 -S 2 +S 3 = 0 ; S 1 -S 2 -S 4 = 0 e S 1 - S 2 0 Escolhendo variáveis básicas-S, S 3 e S 4,, a forma SF1 é S 3 = -S 1 +S 2 e S 4 = S 1 -S 2 com a desigualdade S 1 -S 2 0 escrita em função das variáveis (S 1 e S 2 ) não básicas-S.

75 75 Restrições Estritas / Variáveis Arbitrárias Aparentemente o sistema é satisfazível, pois foi possível escrever as equações na forma SF1 e colocar a disequação em termos das variáveis não básicas-S. No entanto, uma análise mais cuidada permite verificar que as variáveis S 1 e S 2 têm um valor fixo de 0, o que torna impossível a disequação. Com efeito, somando as duas equações de E s, S 3 = -S 1 +S 2 e S 4 = S 1 -S 2 obteríamos S 3 + S 4 = 0. Sendo S 3 e S 4 variáveis não negativas, ambas devem ser nulas.

76 76 Restrições Estritas / Variáveis Arbitrárias Escolhendo outra combinação de variáveis básicas-S (S 1, S 3 e S 4 ) poderíamos ter reescrito a forma SF1 como S 1 = S 2 ;S 3 = 0 e S 4 = 0 Eliminando a variável básica S 1, da disequação S 1 - S obtemos S 2 - S que se simplifica para a desigualdade trivial 0... o que torna evidente a insatisfazibilidade da restrição de desigualdade.

77 77 Restrições Estritas / Variáveis Arbitrárias Analisando a razão pela qual a fixação de variáveis não foi detectada na primeira forma SF1, pode constatar-se que o problema reside na utilização de uma expressão -S 1 +S 2 e da sua simétrica S 1 - S 2 no lado direito de equações do conjunto E s da forma SF1 em que os termos independentes eram nulos. S 3 = -S 1 +S 2 e S 4 = S 1 -S 2 É para impedir estas situações que se define a forma SF2 (para o caso m > z) com uma condição adicional em relação à forma SF1.

78 78 Forma Resolvida SF2 (Restrições) Definição SF2: Um sistema m restrições = e, com z variáveis arbitrárias (z < m) e s+t (s = m-z) variáveis não negativas está na forma resolvida SF2 se as suas restrições se dividirem nos seguintes conjuntos, E a,E s, D: D: O conjunto D é constituido por desigualdades do tipo r i,1 T r i,t T t a i sendo um dos termos r i,t não nulo. As t variáveis Tj são as variáveis não básicas-S. E a : O conjunto E a é constituido por z igualdades Z i = d i + p i,1 T p i,t T t Sendo as variáveis arbitrárias Z i,variáveis básicas-Z.

79 79 Forma Resolvida SF2 (Restrições) Definição SF2 (cont.): E s : O conjunto E s é constituido por s = m-z igualdades do tipo S i = c i +q i,1 T q i,t T t com c i 0 para i:1..s em que as variáveis S i e T j, respectivamente básicas-S e não básicas-S, são variáveis não negativas. Para as variáveis T j, não básicas-S, define-se uma ordem arbitrária pela qual elas devem ser escritas nas igualdades. Nestas igualdades, ou o termo c i é positivo ou, sendo c i =0, o primeiro coeficiente r i,j não nulo deve ser positivo.

80 80 Forma Resolvida SF2 (Restrições) As condições impostas no conjunto E s garantem que qualquer variável não negativa que deva tomar valores fixos é considerada como variável básica-S na forma SF2, permitindo explicitar as variáveis fixas. Teorema: A forma resolvida SF2 detecta as variáveis fixas, como variáveis básicas-S. Demonstração: Basta provar que nenhuma variável não básica-S é fixa (a 0), i.e. dadas as igualdades de E s S i = c i +q i,1 T q i,t T t com c i 0 para i:1..s existirão, para além da solução S i = c i e T j = 0, soluções S i = c i +q i,1 ε q i,t ε t e T j = ε j com ε j > 0 para j: 1..t

81 81 Forma Resolvida SF2 (Restrições) Consideremos a seguinte partição das igualdades de E s E s = R 0 R 1... R t em que a R 0 pertencem todas as restrições com c k > 0, e a R j (para j>0 ) pertencem todas as restrições em que o primeiro coeficiente não nulo (donde, positivo) é r j,k. Para E s = R 0 uma solução T j > 0 é obtida fazendo T j = ε, sendo ε qualquer valor que satisfaça as condições (|q i,1 | +...+|q i,t |) ε c i para todo o i Indices(R 0 ) ou seja 0 < ε min i (c i )/max i (|q i,1 |+...+|q i,t |) para i Indices(R 0 )

82 82 Forma Resolvida SF2 (Restrições) Considere-se agora o caso em que E s = R 0 R 1. Neste caso pode construir-se uma solução T > 0 da seguinte forma. Primeiro obtém-se um valor ε 1 tal que (|q i,1 | ε 1 < c i para todo o i Indices(R 0 ) garantindo-se que c k +q k,1 ε 1 é sempre positivo, qualquer que seja a igualdade de E s. As outras variáveis T j (j > 1) podem assim tomar qualquer valor ε, positivo, tal que 0 < ε min i (c i +q i,1 ε)/max i (|q i,2 |+...+|q i,t |) para todo o i Indices(R 0 R 1 )

83 83 Forma Resolvida SF2 (Restrições) A situação em que E s = R 0 R 1 R 2 pode ser tratada de forma semelhante. Primeiro obtem-se um valor ε 1 tal que (|q i,1 | ε 1 < c i para todo o i Indices(R 0 ) Em seguida obtém-se um valor ε 2 tal que |q i,1 |ε 2 c i + q i,1 ε 1 para todo o i Indices(R 0 R 1 ) garantindo-se c k +q k,1 ε 1 +q k,2 ε 2 > 0 qualquer que seja a igualdade de E s. As outras variáveis T j (j > 2) podem tomar qualquer valor ε, tal que 0 < ε min i (c i +q i,1 ε 1 +q i,2 ε 2 )/max i (|q i,3 |+...+|q i,t |) para todo o i Indices(R 0 R 1 R 2 )

84 84 Forma Resolvida SF2 (Restrições) Este procedimento pode generalizar-se até ao caso em que E s = R 0 R 1... R k com k < t em que os valores ε j (j k) para as variáveis T j são obtidas como neste ultimo caso, garantido que p i = c i +q i,1 ε q i,t-1 ε t-1 > 0 para todo o i Indices(E s ) As outras variáveis T l (j > k) podem tomar qualquer valor ε, positivo, tal que ε min i (p i )/ max i (|q i,k+1 |+...+|q i,t |) para i Indices(E s ) o que conclui a demonstração de que a forma resolvida SF2 não esconde variáveis fixas, e torna-as explícitas como igualdades s i = K i.

85 85 Passagem à Forma Resolvida SF2 A conversão de um conjunto de restrições lineares na forma SF2, de uma forma incremental, é explicada através de um exemplo. R1: -X 1 + 3X 2 9 R2: X 1 + X 2 11 R3: 2X 1 + X 2 18 R4: 2X 1 - X 2 2 X 1,X 2 0

86 86 Cada restrição é introduzida resolvendo em ordem à variável de desvio. No caso de restrições nada mais é necessário fazer. R1: -X 1 + 3X 2 9 -X 1 + 3X 2 + S 1 = 9 S 1 = 9 + X 1 - 3X 2 R2: X 1 + X 2 11 X 1 + X 2 + S 2 = 11 S 2 = 11 - X 1 - X 2 R3: 2X 1 + X X 1 + X 2 + S 3 = 18 S 3 = X 1 - X 2 O vértice definido implicitamente é a origem. Passagem à Forma Resolvida SF2

87 87 No caso de restrições a origem não pertence à região admissível, pelo que há que fazer uma mudança de base. S 1 = 9 + X 1 - 3X 2 S 2 = 11 - X 1 - X 2 S 3 = X 1 - X 2 R4: 2X 1 - X 2 2 2X 1 - X 2 - S 4 = 2 S 4 = X 1 - X 2 X 1 = 1 + X 2 /2 + S 4 /2 Donde S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Passagem à Forma Resolvida SF2

88 88 Em geral a mudança de base pode fazer-se de uma forma sistemática por minimização de uma variável artificial (1ª fase do método de 2 fases do SIMPLEX). Exemplo: R5: X 1 + 2X 2 12 Z 5 = 12 - X 1 - 2X 2 Z 5 = X 2 /2 - S 4 /2 Agora há que minimizar Z 5, através de sucessivas mudanças de base. Passagem à Forma Resolvida SF2 S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2

89 89 Passagem à Forma Resolvida SF2 Min Z 5 S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Z 5 = X 2 /2 - S 4 /2 Como Z 5 / X 2 = -5/2 e Z 5 / S 4 = -1/2 existe um maior decréscimo de Z 5 com X 2, pelo que X 2 entra na base. Por outro lado, como S 1 = 0 = X 2 /2 => X 2 = 4 S 2 = 0 = X 2 /2 => X 2 = 20/3 (6.666) S 3 = 0 = X 2 => X 2 = 8 X 1 = 0 = 1 + X 2 /2 => X 2 = -2 Z 5 = 0 = X 2 /2 => X 2 = 22/5 (4.400 ) a variável S 1 sai da base, já que é a primeira variável a anular-se para valores crescentes de X 2.

90 90 Passagem à Forma Resolvida SF2 Por entrada na base de X 2, por troca com S 1, S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Z 5 = X 2 /2 - S 4 /2 converte-se em X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /2 Z 5 = 1 + S 1 - S 4 Continuando a minimização de Z 5, e pelo raciocínio anterior, S 4 entra da base, por troca com Z 5. Passagem à Forma Resolvida SF2

91 91 Passagem à Forma Resolvida SF2 Tendo-se anulado a variável artificial Z 5, o sistema pode reescrever-se substituindo essa variável pela variável de desvio S 5 = -Z 5. Assim, por entrada na base de S 4, por troca com -S 5, X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /2 Z 5 = 1 + S 1 - S 4 converte-se na forma SF2 X 2 = 21/5 - S 1 /5 + S 5 /5 S 2 = 16/5 - S 1 /5 - 4S 5 /5 S 3 = 33/5 - 3S 1 /5 - 7S 5 /5 X 1 = 18/5 + 2S 1 /5 + 3S 5 /5 S 4 = 1 + S 1 + S 5

92 92 Se houver lugar à fixação de variáveis, esta é detectada na conversão para a forma SF2. Esta fixação é ilustrada no seguinte exemplo. Dadas as 4 primeiras restrições S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Adicionar a nova restrição: R6: X 1 + 2X 2 16 Z 6 = 16 - X 1 - 2X 2 Z 6 = X 2 /2 - S 4 /2 Tal como anteriormente, há que minimizar Z 6, através de sucessivas mudanças de base. Variáveis Fixas em SF2

93 93 Variáveis Fixas em SF2 Min Z 6 S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Z 6 = X 2 /2 - S 4 /2 Como anteriormente, Z 5 / X 2 = -5/2 e Z 5 / S 4 = -1/2, pelo que existe um maior decréscimo de Z 5 com X 2, e X 2 entra na base. Igualmente, S 1 = 0 = X 2 /2 => X 2 = 4 S 2 = 0 = X 2 /2 => X 2 = 20/3 (6.666) S 3 = 0 = X 2 => X 2 = 8 X 1 = 0 = 1 + X 2 /2 => X 2 = -2 Z 6 = 0 = X 2 /2 => X 2 = 6 Sendo igualmente a variável S 1 a sair da base.

94 94 Por entrada na base de X 2, por troca com S 1, S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Z 6 = X 2 /2 - S 4 /2 converte-se em X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /5 Z 6 = 5 + S 1 - S 4 Na minimização de Z 6, agora S 4 entra da base, por troca ou com Z 6 ou com S 2 ! Variáveis Fixas em SF2

95 95 Variáveis Fixas em SF2 Com efeito, pretendendo-se obter o Min Z 6 X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /5 Z 6 = 5 + S 1 - S 4 S 4 entra na base, e portanto deve verificar-se X 2 = 0 = 4 + S 4 /5 => S 4 =-20 S 2 = 0 = 4 - 4S 4 /5 => S 4 = 5 S 3 = 0 = 8 - 7S 4 /5 => S 4 = 40/7 (5.714) X 1 = 0 = 3 + 3S 4 /5 => S 4 = -5 Z 6 = 0 = 5 - S 4 => S 4 = 5 Pelo que quer Z 6 quer S 2 se anulam para S 4 = 5.

96 96 Variáveis Fixas em SF2 Escolhendo S2 para sair da base, por troca com S 4, X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /5 Z 6 = 5 + S 1 - S 4 converte-se em X 2 = 5 - S 1 /4 - S 2 /4 S 4 = 5 + 3S 1 /4 - 5S 2 /4 S 3 = 1 - S 1 /4 - 7S 2 /4 X 1 = 6 + S 1 /4 - 3S 2 /4 Z 6 = 0 + S 1 /4 + 5S 2 /4 Tendo Z6 o valor 0, pode ser substituído por -S6. Mas a restrição S 6 = 0-S 1 /4-5S 2 /4 não está na forma SF2!

97 97 Variáveis Fixas em SF2 Mas reescrevendo a restrição S 6 = 0-S 1 /4-5S 2 /4 como S 1 + 5S S 6 = 0 Verifica-se que deve ser S 1 = S 2 = S 6 = 0 Convertendo-se... X 2 = 5 - S 1 /4 - S 2 /4 S 4 = 5 + 3S 1 /4 - 5S 2 /4 S 3 = 1 - S 1 /4 - 7S 2 /4 X 1 = 6 + S 1 /4 - 3S 2 /4 S 6 = 0 - S 1 /4 - 5S 2 /4... na forma SF2, evidenciando-se a fixação de variáveis S 1 = S 2 = S 6 = 0 X 1 = 6 X 2 = 5 S 4 = 5S 3 = 1

98 98 Sistemas Impossíveis Se o conjunto de restrições fôr insatisfazível, esta situação é igualmente detectada na conversão para a forma SF2, sendo esta feita de uma forma incremental, como ilustrado no seguinte exemplo. Dadas as 4 primeiras restrições, S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 adicionar a nova restrição: R7: X 1 + 2X 2 18 Z 6 7 Z 7 = X 2 /2 - S 4 /2 Como anteriormente, há que minimizar Z 7.

99 99 Sistemas Impossíveis Min Z 7 S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Z 7 = X 2 /2 - S 4 /2 Como anteriormente, Z 7 / X 2 = -5/2 e Z 7 / S 4 = -1/2, pelo que existe um maior decréscimo de Z 7 com X 2, e X 2 entra na base. Igualmente, S 1 = 0 = X 2 /2 => X 2 = 4 S 2 = 0 = X 2 /2 => X 2 = 20/3 (6.666) S 3 = 0 = X 2 => X 2 = 8 X 1 = 0 = 1 + X 2 /2 => X 2 = -2 Z 7 = 0 = X 2 /2 => X 2 = 34/5 (6.800) Continuando a ser a variável S 1 a sair da base.

100 100 Por entrada na base de X 2, por troca com S 1, S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Z 7 = X 2 /2 - S 4 /2 converte-se em X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /5 Z 7 = 7 + S 1 - S 4 Na minimização de Z 7, agora S 4 entra da base, por troca com S 2 ! Sistemas Impossíveis

101 101 Sistemas Impossíveis Com efeito, pretendendo-se obter o Min Z 7 X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /5 Z 7 = 7 + S 1 - S 4 S 4 entra na base, e portanto deve verificar-se X 2 = 0 = 4 + S 4 /5 => S 4 =-20 S 2 = 0 = 4 - 4S 4 /5 => S 4 = 5 S 3 = 0 = 8 - 7S 4 /5 => S 4 = 40/7 (5.714) X 1 = 0 = 3 + 3S 4 /5 => S 4 = -5 Z 7 = 0 = 5 - S 4 => S 4 = 7 Pelo que quer S 2 é o primeiro a anular-se para valores crescentes de S 4 (para S 4 = 5).

102 102 Sistemas Impossíveis Saindo S2 da base, por troca com S 4, X 2 = 4 - 2S 1 /5 + S 4 /5 S 2 = 4 + 3S 1 /5 - 4S 4 /5 S 3 = 8 + 4S 1 /5 - 7S 4 /5 X 1 = 3 - S 1 /5 + 3S 4 /5 Z 7 = 7 + S 1 - S 4 converte-se em X 2 = 5 - S 1 /4 - S 2 /4 S 4 = 5 + 3S 1 /4 - 5S 2 /4 S 3 = 1 - S 1 /4 - 7S 2 /4 X 1 = 6 + S 1 /4 - 3S 2 /4 Z 7 = 2 + S 1 /4 + 5S 2 /4 Reescrevendo-a como S 1 + 5S 2 +4 S 7 = -8 esta última restrição, não só mostra que Z 7 não pode tomar o valor 0, como que é insatisfazível!

103 103 Sistemas Impossíveis A conversão na forma SF2 permite ainda detectar Conjuntos Mínimos de Restrições Insatisfazíveis (Irreducible Impossible Sets). Estes conjuntos são identificados pelas suas variáveis de desvio que podem ser vistas como testemunhas. Exemplo: S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 -X 1 +2X X 1 +2X 2 -S 8 = 10 X 2 = 22/3 + S 4 /3 +2S 8 /3

104 104 Sistemas Impossíveis Substituindo no sistema abaixo X 2 = 22/3 + S 4 /3 +2S 8 /3 S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 obtemos, S 1 = -25/3 - S 4 /3 - 5S 8 /3 que pode ser reescrito como 3S 1 + S 4 + 5S 8 = -25 O que mostra que não só o sistema inicial é impossível, mas que existe um conjunto mínimo de restrições incompatíveis constituído pelas restrições R 1, R 4 e R 8.

105 105 Sistemas Impossíveis Os conjuntos IIS não são únicos. Substituindo no sistema abaixo X 2 = 22/3 + S 4 /3 +2S 8 /3 S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 Obteríamos igualmente, S 2 = -1 - S 4 - S 8 que pode ser reescrito como S 2 + S 4 + S 8 = -1 o que identifica outro conjunto mínimo de restrições incompatíveis constituído pelas restrições R 2, R 4 e R 8.

106 106 Sistemas Impossíveis Outros conjuntos IIS podem permanecer escondidos na conversão para a forma SF2. A restrição obtida anteriormente S 1 = -25/3 - S 4 /3 - 5S 8 /3 pode reescrever-se como S 4 = S 1 - 5S 8 que, com as anteriores, X 2 = 22/3 + S 4 /3 +2S 8 /3 X 1 = 1 + X 2 /2 + S 4 /2 origina X 1 = S 1 - 3S 8 ou X 1 + 2S 1 + 3S 8 = -12, revelando ainda outro conjunto mínimo constituído pelas restrições R 1, R 8 e X 1 (>= 0).

107 107 Sistemas Impossíveis Igualmente das restrições X 2 = 22/3 + S 4 /3 +2S 8 /3 S 4 = S 1 - 5S 8 obtem-se, com as anteriores, X 2 = 1 - S 1 - S 8 ou seja X 2 + S 1 + S 8 = 1, revelando outro conjunto mínimo constituído pelas restrições R 1, R 8 e X 2 >0. (De notar que a determinação de todos os conjuntos mínimos é um problema NP-hard).

108 108 Restrições Redundantes É fácil de mostrar que, dado um conjunto de restrições satisfazíveis, se uma restrição a i X i > K ou a i X i - S i = K é impossível, então a restrição a i X i < K ou a i X i + S r = K é redundante ( a igualdade a i X i + S r = K pode ser analisada facilmente) Das equações anteriores tira-se Sr + Si = 0. Se se obtiver uma condição de impossibilidade S i + p j V j = - C então a condição de redundância é S r = C + p j V j

109 109 Restrições Redundantes Exemplo: Dadas as restrições S 1 = X 2 /2 + S 4 /2 S 2 = X 2 /2 - S 4 /2 S 3 = X 2 - S 4 X 1 = 1 + X 2 /2 + S 4 /2 a restrição -X 1 +2X X 1 +2X 2 +S 9 = 10 é redundante. Das equações acima tira-se S 1 = -25/3 - S 4 /3 + 5S 9 /3 S 9 = 5 + 3S 1 /5 + S 4 /5 Pelo que a última restrição é redundante face a R1 e R4


Carregar ppt "1 Restrições Lineares sobre os Reais/Racionais Muitos problemas podem ser modelados através de variáveis reais (ou racionais), denominadas variáveis de."

Apresentações semelhantes


Anúncios Google