A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

AE 213 - ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Estabilidade de Estruturas.

Apresentações semelhantes


Apresentação em tema: "AE 213 - ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Estabilidade de Estruturas."— Transcrição da apresentação:

1 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Estabilidade de Estruturas

2 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Viga em Campo de Tração Diagonal

3 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Princípio da Tração Diagonal

4 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Puro Carga nos Flanges Tensão de Tração Diagonal

5 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Puro Carga nos Reforçadores Transversais Carga nos Rebites por Unidade de Comprimento Para   P r < S/h

6 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Puro Tensões Devidas ao Campo de Tração Diagonal Ângulo de Tração Diagonal Substituindo as expressões para as tensões, derivando e igualando a zero: ou

7 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Puro Ângulo de Tração Diagonal Multiplicando a mão-esquerda por resulta É fácil mostrar que uma outra expressão para o ângulo de tração diagonal é

8 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Puro Tensões Secundárias nas Mesas Da teoria de vigas nas extremidades, e a metade, no centro do vão.

9 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Puro Concentração de Tensões Se a rigidez das mesas em flexão é pequena, as deflexões aliviam a tração diagonal nas faixas diagonais que estão conectadas à mesa, na região central do vão. As diagonais conectadas entre reforçadores devem balancear esta deficiência e, portanto, carregar tensões mais altas do que aquelas calculadas sob a hipótese de que todas as diagonais estão igualmente carregadas. As diagonais que são mais solicitadas estão mostradas esquematicamente na Figura.

10 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Fatores de Concentração de Tensões

11 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Puro Flambagem dos Reforçadores a)Reforçadores Duplos b)Reforçadores Simples

12 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Parcial Quando uma carga gradualmente crescente é aplicada a uma viga de alma plana, reforçada transversalmente e livre de imperfeições substanciais, as seguintes observações podem ser feitas: * Quando submetida a cargas baixas, a viga se comporta de acordo com a teoria da viga resistente em cisalhamento; a alma permanece plana e e não há tensões nos reforçadores; * Numa determinada carga crítica, a alma começa a flambar; as ondulações são quase imperceptíveis e medidas muito cuidadosas são necessárias para estabelecer o seu padrão; * À medida que a carga é aumentada, as ondulações tornam-se mais profundas e mais distintas e o padrão muda lentamente para o padrão de dobras paralelas, característico de um campo de tração diagonal bem desenvolvido. * O processo da formação e desenvolvimento das ondulações é acompanhado do aparecimento e desenvolvimento de tensões axiais de compressão nos reforçadores. A intuição física sugere que o estado de tração diagonal pura é aproximado bastante bem se a carga aplicada é algumas centenas de vezes maiores do que a carga de flambagem. Para a grande maioria das almas, entretanto, a razão entre a carga de falha e a de flambagem é muito menor e a teoria de tração diagonal pura fornece aproximações tanto mais pobres quanto menor esta razão.

13 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Incompleto – NACA Fator de Tração Diagonal

14 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Campo de Tração Diagonal Incompleto - NACA Limitações do Método 1.A razão entre a espessura dos reforçadores transversais e a alma não deve ser menor do que 0.6, ou seja t U /t > 6 2. O espaçamento entre os reforçadores não deve estar muito fora do intervalo 0.2 < d/h < 1 3. Os testes realizados pela NACA não cobriram almas muito finas ou muito espessas; em conseqüência, cálculos não conservativos podem resultar de análises de almas com espessuras fora do intervalo 200 < h/t < 1500; Tensão Crítica da Alma em Cisalhamento

15 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Coeficiente de Flambagem em Cisalhamento hchc dcdc d c, h c :

16 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Crítica em Cisalhamento na Alma

17 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Crítica em Almas com Furos somente se onde  = fator de redução devido à presença do furo k s = coeficiente de flambagem em cisalhamento para a placa sem o furo F pico = tensão efetiva de pico na placa K tg = fator de concentração de tensão para a tensão efetiva de pico

18 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Crítica em Almas com Furos

19 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Crítica em Almas com Furos

20 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Crítica em Almas com Furos

21 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Painéis sob Cisalhamento e Flexão

22 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Painéis sob Cisalhamento e Compressão/Tração Compressão Tração

23 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Razão de Carregamento Razão de carregamento = se a altura das mesas é pequena comparada com a altura da viga e se as mesas são seções em ângulo caso contrário esforço cortante na alma distância entre centróides das mesas momento estático do material do flange em torno do eixo elástico momento estático do material efetivo da alma em torno do eixo elástico momento de inércia efetivo da seção No cálculo de I e Q w, a espessura efetiva da alma é (1 – k) t

24 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Fator de Tração Diagonal

25 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Média no Reforçador e Área Efetiva distância do centróide do reforçador à superfície média da alma raio de giração do reforçador em relação ao centróide e em torno de eixo paralelo à alma

26 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões na Alma e nas Mesas Tensões Normais na Alma Tensões nas Mesas devidas ao Campo de Tração Diagonal

27 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Ângulo de Tração Diagonal Processo iterativo: a) estime , b) ache as deformações correspondentes e, c) calcule  através da 1a. equação acima

28 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Ângulo de Tração Diagonal - Aproximações As mesas são usualmente muito mais rígidas do que a alma e reforçador. Em conseqüência,  F pode ser desprezado. Por outro lado, o ângulo  está entre 45 o e 38 o, de modo que sen2   1. Nestas condições, tem-se

29 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Ângulo de Tração Diagonal

30 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão de Cisalhamento Máxima na Alma Nesta equação, C 1 é um fator de correção devido ao fato de que o ângulo de tração diagonal não é 45 o. Para uma alma em tração diagonal pura (k = 1) e  = 45 o, a tensão de cisalhamento é Para um ângulo  45   a expressão para a tensão de cisalhamento fornece Igualando a tensão de cisalhamento máxima a f n /2 resulta em

31 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Fatores de Correção/Concentração de Tensões O fator C 2 é um fator de concentração de tensões que surge devido à flexibilidade dos flanges e que foi introduzido na Eq. (8.17). É considerado que o efeito do fator C 2 varia linearmente com k por falta de melhores dados. O efeito do fator C 1 foi considerado variar com k 2 baseado nos ensaios realizados em painéis curvos, nos quais o ângulo a varia numa gama maior do que em almas planas. De qualquer forma, nas almas planas consideradas aqui, o ângulo toma um valor perto de 40 o, e o efeito de C 1 não é importante.

32 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Admissível na Alma

33 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Admissível na Alma

34 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Critérios de Resistência da Alma a) b) no eixo neutro onde Q e I são, respectivamente, o primeiro e segundo momentos de área em torno do eixo neutro (inclua a alma na determinação de Q e I) c) A tensão de cisalhamento (área líquida) ao longo da linha interna da rebitagem alma-flanges, não pode exceder a tensão de cisalhamento última admissível: onde D = diâmetro do rebite, p = passo de rebitagem e t p = espessura do “pad up” d) Uma verificação de tensões combinadas deve ser feita na interseção da linha interna de rebitagem alma-flange e a linha de rebitagem do reforçador. A seguinte equação de interação deve ser satisfeita pelas tensões de tração e cisalhamento (área líquida):

35 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Ondulações Permanentes na Alma F sPB na figura é a tensão admissível para que não se desenvolvam flambas permanentes na alma

36 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Média no Reforçador distância do centróide do reforçador à superfície média da alma raio de giração do reforçador em relação ao centróide e em torno de eixo paralelo à alma

37 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão Máxima no Reforçador

38 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador Há cinco tipos de falhas concebíveis nos reforçadores: (1) Falha como coluna (2) Falha local forçada (3) Falha local natural (4) Falha por instabilidade geral da alma e reforçadores (5) Falha por instabilidade torsional do reforçador (não tratada aqui)

39 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador 1. Falha como Coluna A falha como coluna por instabilidade elástica no sentido de Euler só é possível para reforçadores duplos e simétricos. Quando a coluna começa a fletir, os reforçadores forçam a alma para fora de seu plano original. Forçar de tração desenvolvem, então, componentes normais ao plano da alma, as quais tendem a forçar os reforçadores para trás. Esta ação de escoramento pode ser levada em consideração usando-se um comprimento reduzido “efetivo” do reforçador, como recomendado por Kuhn:

40 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador O reforçador simples é um membro em compressão carregado excentricamente. Uma teoria para reforçadores simples é difícil de ser desenvolvida porque a excentricidade da carga é uma função das deformações do reforçador e da alma, bem como das propriedades do reforçador. Tendo como base as observações experimentais (e.g., reforçadores simples tendem a flambar em duas semi-ondas) Critérios a serem satisfeitos pelos reforçadores

41 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador 2. Falha Local Forçada As ondulações da alma forçam a flambagem do reforçador, na perna conectada à alma, particular- mente se a aba do reforçador for mais fina do que a alma. Estas ondulações produzem um braço às forças de compressão agindo na aba, produzindo uma condição severa de tensões. As ondulações na aba conectada, por sua vez, induzirão a flambagem nas abas livres. Em reforçadores simples, as abas não conectadas serão aliviadas consideravelmente devido ao fato de que a tensão de compressão diminui com a distância da alma; as tensões admissíveis de reforçadores simples são, portanto, maiores do que aquelas de reforçadores duplos. Como a falha local forçada tem natureza local, assume-se que depende do valor de pico da tensão f u max no reforçador, e não do valor médio.

42 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador Reforçador Simples Reforçador Duplo 2024-T C = 26.0 ksi C = 21.0 ksi 7075-T C = 32.5 ksi C = 26.0 ksi

43 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador

44 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador 3. Falha Local Natural O termo “falha local natural” é usado para denotar uma falha local resultante da tensão de compressão uniformemente distribuída sobre a seção transversal do reforçador. Pela definição, pode ocorrer somente em reforçadores duplos. Para evitar a falha local natural, a tensão de pico no reforçador, f umax, deve ser menor do que a tensão de falha local da seção com L’/   0. Aparentemente, a falha local natural não parece ser um fator relevante a ser considerado em projeto.

45 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador 4. Falha por instabilidade geral da alma e reforçadores Dados experimentais disponíveis até o momento não indicam que a instabilidade geral da alma e reforçadores necessita ser considerada no projeto. Aparentemente, o sistema alma-reforçadores estará livre da instabilidade se os reforçadores forem projetados de modo a falhar por ação de coluna, ou falha local forçada, numa tensão de cisalhamento não muito menor do que a resistência da alma ao cisalhamento.

46 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS As tensões primárias nas fibras extremas dos flanges são dadas por onde c é a distância entre a fibra extrema e o eixo neutro da viga. Análise do Flange a) Tensões Primárias A carga e tensão axiais primárias nos flanges são dadas por,  h e = distância entre centróides A parcela do momento, aplicado na seção, que é absorvido pela alma, é A parcela do momento absorvido pelas mesas é, portanto,

47 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Análise do Flange b) Tensões Devidas à Tração Diagonal c) Tensões Devidas ao Momento Secundário nos Flanges Este momento causa tensões de tração nas fibras externas e tensões de compressão nas fibras internas. Se C 3 e k tiverem valores próximos da unidade, o momento no meio do vão tem a metade do valor dado e sinal oposto (causando compressão nas fibras externas). onde F é a tensão admissível apropriada para o material (falha local, falha como coluna Euler- Johnson ou escoamento em compressão, para ; ou tensão última de tração, para ) e F BM é o módulo de ruptura para a seção do flange

48 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Conexões A carga por unidade de comprimento da conexão alma-flange é dada por A resistência total em cisalhamento requerida de todos os rebites em reforçadores duplos é A resistência em tração dos rebites para reforçadores duplos é 0.15 t F tu onde F tu é a resistência em tração da alma tensão de falha do reforçador para L’/   0 momento estático do reforçador em torno de eixo na superfície média da alma largura da perna livre do reforçador Conexão Alma-Reforçador (Reforçadores Duplos) Conexão Alma-Flange

49 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Conexões Conexão Alma-Reforçador (Reforçadores Simples) Resistência à tração por comprimento de rebitagem = 0.22 t F tu O passo dos rebites deve ser pequeno o suficiente para prevenir flambagem entre rebites, da alma ou da perna do reforçador, o que for menos espesso), numa tensão de compressão igual a f max. O passo dos rebites deve ser menor do que d/4 Conexão Reforçador-Flange A carga a ser resistida pela conexão é P u = f u A u (para reforçadores duplos) P u = f u A ue (para reforçadores simples)

50 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Conexões Alma-Reforçador – Critérios da Boeing Tab. 8.1 Cargas a serem resistidas pelas conexões Alma-Reforçador Reforçador Simples Reforçador Duplo Tração (lb/in) Alumínio h/t > 300 Alumínio h/t < 300 Titânio Cisalhamento (lb/in) Todos os Materiais

51 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Conexões Alma-Reforçador – Método Douglas Reforçador Simples  R R Reforçador Duplo  0.68R R

52 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Exemplo: Viga em Campo de Tração Diagonal

53 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Exemplo: Viga em Campo de Tração Diagonal

54 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Exercício - Aplicação do Método NACA Verificação se os limites do método são satisfeitos Cálculo da tensão crítica em cisalhamento

55 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Cálculo da Tensão Crítica

56 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Exemplo - Método NACA Cálculo da razão de carregamento Cálculo do fator de tração diagonal Cálculo da tensão média no reforçador

57 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Cálculo do Fator de Tração Diagonal

58 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Cálculo da Tensão Média no Reforçador

59 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Cálculo da Tensão Máxima no Reforçador Cálculo da tensão máxima no reforçador

60 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Cálculo do Ângulo de Tração Diagonal Cálculo do ângulo de tração diagonal

61 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis no Reforçador Como só há reforçador de um lado da alma, os seguintes critérios têm de ser satisfeitos: 1. A tensão f u deve ser menor do que a tensão F co do reforçador 2. A tensão no centróide do reforçador deve ser menor do que a tensão admissível para uma coluna com razão de esbeltez h u /2  = 28.50/(2x0.298) = 47.8 Cálculo da tensão de falha local do reforçador (F co ) - Método Gerard Não foi aplicada a tensão de corte porque a tensão de flambagem local do reforçador é próxima da tensão de escoamento! f u = 16 ksi < 51.2 ksi = F co OK Cálculo da tensão de falha da coluna de razão de esbeltez 47.8 Parábola de Johnson -

62 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão de Cisalhamento Máxima na Alma Cálculo da tensão de cisalhamento máxima na alma

63 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Cálculo da Tensão Admissível na Alma Cálculo da tensão admissível na alma

64 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Verificação da Rebitagem Alma-Flange Verificação da rebitagem alma-flange A carga por unidade de comprimento é A carga por espaçamento 3/4” de rebite é A resistência em cisalhamento simples, do rebite 2117-T3 de 5/32 é x 0.86 = kips A resistência em ovalização da chapa 2024-T3 de 0.025” é x 1.24 = kips A resistência por espaçamento de rebite é 2 x = kips

65 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Rebitagem Alma-Reforçador Rebitagem alma-reforçador O critério para a resistência em tração requerida por comprimento de rebitagem é 0.22 t F tu = 0.22 x x 62 = kips/in Não foi especificada a fixação alma-reforçador. A rebitagem deve ser especificada modo a que desenvolva 0.34 kips/in de reforçador. O espaçamento entre rebites deve ser o pequeno suficiente para evitar a flambagem entre rebites da alma, quando sujeita à tensão de compressão de 21.5 ksi

66 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Fixação Flange-Reforçador A fixação flange-reforçador é feita por parafusos de aço de 1/4” de diâmetro. A carga na extremidade do reforçador é A resistência em cisalhamento do parafuso de 1/4 é ksi A resistência à ovalização da perna de 3/32” do flange inferior é Fixação Flange-Reforçador

67 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões nos Flanges Seção à 50 in da carga  M = 50 x 13.5 = 675 kips-in a) Tensões primárias Flange superior – fibra extrema superior Flange superior – fibra extrema inferior

68 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões nos Flanges b) Tensões axiais devidas ao campo de tração diagonal Flange inferior – fibra extrema inferior Flange inferior – fibra extrema superior Flange superior Flange inferior

69 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões nos Flanges c) Tensões devidas a momentos secundários Este momento ocorre no apoio dos reforçadores; no meio do vão é a metade! Flange superior – fibra extrema superior Flange superior – fibra extrema inferior

70 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões nos Flanges Flange inferior – fibra extrema inferior Flange inferior – fibra extrema superior Tensões nas fibras extremas do flange superior junto aos reforçadores Tensões nas fibras extremas do flange inferior junto aos reforçadores

71 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões nos Flanges As tensões calculadas são máximas para as fibras extremas inferiores de ambos os flanges. Nas fibras extremas superiores de ambos os flanges, entretanto, as tensões máximas ocorrem no meio do vão: Tensões nas fibras extremas superiores dos flanges, no meio do vão:

72 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensão de Compressão Média no Flange Superior Carga de compressão primária no centróide do flange Carga de compressão devida à tração diagonal Tensão média no flange superior

73 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Tensões Admissíveis nos Flanges a) Em nenhum ponto dos flanges a tensão deve ultrapassar F cy = 70 ksi b) O flange superior não deve falhar como coluna Pode-se supor que a flambagem lateral do flange é prevenida pelo suporte fornecido pela estrutura adjacente. Nestas condições, a falha do flange se dará por falha local. Calculando a tensão de falha local pelo método de Gerard: g = 4 (certamente conservativo),  g = 0.67, m = 0.4, F cut = 0.8 F cy

74 AE ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS “Problemas” do Projeto a)A tensão máxima de tração no flange inferior está acima da tensão de escoamento; b)O reforçador transversal está superdimensionado; c)A rebitagem alma-flange está superdimensionada; d)A conexão flange-reforçador está superdimensionada.


Carregar ppt "AE 213 - ESTABILIDADE DE ESTRUTURAS AERONÁUTICAS Estabilidade de Estruturas."

Apresentações semelhantes


Anúncios Google