A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Charles H. G. SantosÉrika P. L. AlmeidaRoberto Baptista 09/7201408/5036509/72880 Julho de 2009 Pêndulo invertido com Lógica Fuzzy UnB / FT / Programa de.

Apresentações semelhantes


Apresentação em tema: "Charles H. G. SantosÉrika P. L. AlmeidaRoberto Baptista 09/7201408/5036509/72880 Julho de 2009 Pêndulo invertido com Lógica Fuzzy UnB / FT / Programa de."— Transcrição da apresentação:

1 Charles H. G. SantosÉrika P. L. AlmeidaRoberto Baptista 09/ / /72880 Julho de 2009 Pêndulo invertido com Lógica Fuzzy UnB / FT / Programa de Pós Graduação Introdução a Sistemas Inteligentes Professor Dr. Alexandre Romariz

2 Tema original

3 Rádio cognitivo Tema original do trabalho Transmissão oportunista Canais desocupados são identificados e utilizados para a transmissão Quanto maior for a informação sobre os sinais, melhor Predição da ocupação do Canal Identificação de algumas tecnologias de transmissão que ocupam a mesma banda (2.4 GHz)  Bluetooth (FH)  WLAN (DS-CDMA)

4 Porquê? Aproveitar diferenças de tecnologia de transmissão para identificação de sinais  Bluetooth  frequency hopping (várias freqüências) / 1 MHz  WLAN  espalhamento espectral / 22 MHz Extrair as características  frequência central, variação da frequência e banda ocupada por meio da distribuição de Wigner-Ville Usar dados para treinar uma rede neural Rádio cognitivo Tema original do trabalho

5 Resultados de Simulação

6 Rádio cognitivo Tema original do trabalho Resultados de um analisador de espectro

7 Pêndulo invertido

8 O problema do pêndulo

9

10 Ações de controle

11 A abordagem clássica de controle Projeto do controlador com baseado no lugar geométrico das raízes Transformações lineares Analise do sistema no domínio da frequência Projeto do controlador com base no modelo de espaço de estados Transformações lineares Analise no domínio da frequência Teoria de álgebra linear

12 A abordagem Lógica Fuzzy Utiliza conhecimento empírico sobre o problema Não existe metodologia rígida para projeto do controlador Mudanças no sistema a ser controlado tem impacto menor no controlador Não muda as regras implementadas

13 Histórico – Lógica Fuzzy em Controle Conceito introduzido por Lotfi A. Zadeh (1965) Inicialmente ignorado nos EUA por estar associado à redes neurais Não ignorado no Japão Aplicação no controle de movimento de trem da cidade de Sendai (Hitachi – 1985) Takeshi Yamakawa demonstra a superioridade do controlador fuzzy para o problema do pendulo invertido em conferência sobre lógica fuzzy (Tokio – 1987)

14 Implementação de controle Fuzzy

15 Definição das regras Fuzzy Força Positiva Aumenta a posição do carrinho Aumenta o ângulo do pêndulo Força Negativa Diminui a posição do carrinho Diminui o ângulo do pêndulo O que fazer quando o ângulo é positivo e a posição é negativa?

16 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Θ zero Θ pouco negativo Θ muito negativo

17 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Θ zero Força zero Θ pouco negativo Θ muito negativo

18 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Θ zero Força pouco positiva Força zero Θ pouco negativo Θ muito negativo

19 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Θ muito negativo

20 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Força pouco negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Θ muito negativo

21 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Força pouco negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Θ muito negativo

22 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Θ muito negativo

23 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força pouco positiva Θ muito negativo

24 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo

25 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo

26 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Força pouco negativa Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo

27 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Força pouco negativa Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo

28 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Força pouco negativa Força muito negativa Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo

29 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Força pouco negativa Força muito negativa Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo Força pouco positiva

30 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Força pouco negativa Força muito negativa Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo Força muito positiva Força pouco positiva

31 Definição das regras Fuzzy X negativo X zero X positivo Θ muito positivo Força pouco negativa Força muito negativa Θ pouco positivo Força pouco negativa Força muito negativa Θ zero Força pouco positiva Força zero Força pouco negativa Θ pouco negativo Força muito positiva Força pouco positiva Θ muito negativo Força muito positiva Força pouco positiva

32 Definição das regras Fuzzy Além de definir as regras é necessário definir as funções de pertinência, e os limiares de atuação dessas funções – 90˚ ≤ Θ ≤ 90˚ – 90˚ ≤ Θ ≤ 90˚ – 4 ≤ x ≤ 4 – 1 ≤ F ≤ 1

33 Resultados obtidos

34 Primeira Simulação – 90˚ ≤ Θ ≤ 90˚ – 90˚ ≤ Θ ≤ 90˚ – 4 ≤ x ≤ 4 – 1 ≤ F ≤ 1

35 Primeira Simulação – 90˚ ≤ Θ ≤ 90˚ – 90˚ ≤ Θ ≤ 90˚ – 4 ≤ x ≤ 4 – 1 ≤ F ≤ 1

36 Segunda Simulação – 45˚ ≤ Θ ≤ 45˚ – 45˚ ≤ Θ ≤ 45˚ – 4 ≤ x ≤ 4 – 40 ≤ F ≤ 40

37 Segunda Simulação – 45˚ ≤ Θ ≤ 45˚ – 45˚ ≤ Θ ≤ 45˚ – 4 ≤ x ≤ 4 – 40 ≤ F ≤ 40

38 Terceira Simulação – 26˚ ≤ Θ ≤ 26˚ – 26˚ ≤ Θ ≤ 26˚ – 2 m ≤ x ≤ 2 m – 60 N ≤ F ≤ 60 N

39 Terceira Simulação – 26˚ ≤ Θ ≤ 26˚ – 26˚ ≤ Θ ≤ 26˚ – 2 m ≤ x ≤ 2 m – 60 N ≤ F ≤ 60 N

40 Qualidade dos resultados Bom desempenho do sistema Análise simples e empírica do problema Controlador de fácil implementação

41 Controle Clássico x Controle Fuzzy CONTROLE CLÁSSICOCONTROLE FUZZY Exige modelamento matematico (em muitos casos versão linearizada) Exige conhecimento empírico do problema Análise complexa e individual do problema (mesmo problemas semelhantes) Análise simples do problema Não requer conhecimento empírico sobre o problema Requer muito conhecimento empírico sobre o problema Implementação simples com componentes eletrônicos discretos Requer um esforço computacional maior (CIs dedicados ou computadores)

42 Aplicacão prática – Pêndulo invertido

43 Perguntas?


Carregar ppt "Charles H. G. SantosÉrika P. L. AlmeidaRoberto Baptista 09/7201408/5036509/72880 Julho de 2009 Pêndulo invertido com Lógica Fuzzy UnB / FT / Programa de."

Apresentações semelhantes


Anúncios Google