A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Lógica Introdução (slides modificados de Joseluce Cunha)

Apresentações semelhantes


Apresentação em tema: "Lógica Introdução (slides modificados de Joseluce Cunha)"— Transcrição da apresentação:

1 Lógica Introdução (slides modificados de Joseluce Cunha)

2 O que é lógica? O que seria um comportamento lógico? Sair num dia de chuva com o guarda-chuva aberto Sair num dia de chuva segurando um guarda- chuva fechado O que é uma explicação lógica? Luiza parou no restaurante porque estava com fome Luiza parou na farmácia porque estava com fome

3 O que é lógica? Argumentação racional; Argumentação razoável; Lógica é o estudo do raciocínio (Shoenfield).

4 Origem da Lógica Na Grécia Antiga, 342 a.C, em meio a embates filosóficos, Aristóteles sistematizou a Lógica com o intuito de verificar que argumentos eram válidos, elevando-a assim à categoria de ciência. Em sua obra chamada Organum (“ferramenta para o correto pensar”), estabeleceu princípios tão gerais e sólidos que até hoje são considerados válidos.

5 Origem Aristóteles se preocupava com as formas de raciocínio que, a partir de conhecimentos considerados verdadeiros, permitiam obter novos conhecimentos. Essa conexão de idéias ele chamou de Silogismo. A partir dos conhecimentos tidos como verdadeiros, caberia à Lógica a formulação de leis gerais de encadeamentos de conceitos e juízos que levariam à descoberta de novas verdades. Essa forma de encadeamento é chamada, em Lógica, de argumento.

6 Argumento Um argumento é uma seqüência de proposições (declarações/afirmações) na qual uma delas é a conclusão e as demais são premissas. Uma proposição (ou declaração/afirmação) é uma sentença que pode ser verdadeira ou falsa. O objeto de estudo da lógica é determinar se a conclusão de um argumento é ou não uma consequência lógica das premissas.

7 Argumento

8 Validade de um Argumento Em um argumento válido, as premissas são consideradas provas evidentes da verdade da conclusão, caso contrário não é válido. Quando é válido, podemos dizer que a conclusão é uma consequência lógica das premissas, ou ainda que a conclusão é uma inferência decorrente das premissas.

9 Validade de um Argumento Inferência é a relação que permite passar das premissas para a conclusão (um “ encadeamento lógico”) A palavra inferência vem do latim, Inferre, e significa “conduzir para”

10 Validade de um Argumento Exemplo 1: O argumento que segue é válido? Se eu ganhar na Loteria, serei rico. Eu ganhei na Loteria. Logo, sou rico.  É Válido (a conclusão é uma decorrência lógica das duas premissas.)

11 Validade de um Argumento Exemplo 2: O argumento que segue é válido? Se eu ganhar na Loteria, serei rico Eu não ganhei na Loteria Logo, não sou rico  Não é Válido (a conclusão não é uma decorrência lógica das duas premissas.)

12 Dedução e Indução Algumas das ferramentas que podem ser utilizadas pelo pensamento na busca de novos conhecimentos são a dedução e a indução, que dão origem a dois tipos de argumentos: Dedutivos e Indutivos.

13 Argumentos Dedutivos Pretendem que suas premissas forneçam uma prova conclusiva da veracidade da conclusão e podem ser: Válidos: quando suas premissas, se verdadeiras, fornecem provas convincentes para a conclusão. Isto é, se as premissas forem verdadeiras, é impossível que a conclusão seja falsa; Inválidos: não se verifica a característica anterior.

14 Argumentos Dedutivos Exemplos de argumentos dedutivos: Os dois exemplos anteriores (um válido e outro inválido) Outro exemplo: Todo homem é mortal. Sócrates é um homem. Logo, Sócrates é mortal. (Argumento Válido)

15 Argumentos Indutivos Não pretendem que suas premissas forneçam provas cabais da veracidade da conclusão, mas apenas que forneçam indicações dessa veracidade. (possibilidade, probabilidade) Seguem do Raciocínio Indutivo, isto é, obtém conclusões baseada em observações/experiências. Enquanto que um Raciocínio Dedutivo exigi uma prova formal sobre a validade do argumento. Os termos válidos e inválidos não se aplicam, são avaliados de acordo com a maior ou a menor probabilidade com que suas conclusões sejam estabelecidas.

16 Argumentos Indutivos Exemplo: Joguei uma pedra no lago, e ela afundou; Joguei outra pedra no lago e ela também afundou; Joguei mais uma pedra no lago, e também esta afundou; Logo, se eu jogar uma outra pedra no lago, ela vai afundar.

17 Argumentos Indutivos A Lógica Formal só estuda Argumentos Dedutivos, verificando se são ou não válidos.

18 Validade e Verdade Verdade e Falsidade: são propriedades das proposições, nunca dos argumentos Validade ou Invalidade: são proprie- dades dos argumentos dedutivos que dizem respeito a inferência ser ou não válida (raciocínio ser ou não correto)

19 Validade e Verdade Exemplo 1 Toda baleia é um mamífero (V) Todo mamífero tem pulmões(V) Logo, toda baleia tem pulmões (V)  Argumento válido e a conclusão verdadeira.

20 Validade e Verdade Exemplo 2 Toda aranha tem seis pernas (F) Todo ser de seis pernas tem asas (F) Logo, toda aranha tem asas (F)  Argumento válido e a conclusão falsa

21 Validade e Verdade Os conceitos de argumento válido ou inválido são independentes da verdade ou falsidade de suas premissas e conclusão. Qualquer combinação de valores verdade entre as premissas e a conclusão é possível, exceto que nenhum argumento dedutivo válido tenha as premissas verdadeiras e a conclusão falsa. Um argumento dedutivo no qual todas as premissas são verdadeiras é dito Argumento Correto, evidentemente sua conclusão também é verdadeira.

22 Avaliação de um Argumento Principal propósito de um argumento: Demonstrar que uma conclusão é provável ou verdadeira. Como avaliar que um argumento atinge ou não esse propósito? (Se ele é válido?)

23 Avaliação de um Argumento Critérios usados para avaliar um argumento: Se todas as premissas são verdadeiras; Se, dada a verdade das premissas, a conclusão é ao menos provável; Se as premissas são relevantes para a conclusão.

24 Validade e Probabilidade Indutiva. Argumentos Dedutivo e Argumentos Indutivos Os argumentos podem ser classificados em duas categorias: Argumento dedutivo Argumento cuja conclusão deve ser verdadeira se suas premissas básicas forem verdadeiras. Em outras palavras - um argumento é dedutivo quando: “se as premissas forem verdadeiras é impossível a conclusão ser falsa”. Argumento indutivo (ou dedutivo inválido) Argumento cuja conclusão não é necessária, dadas suas premissas básicas.

25 Validade e Probabilidade Indutiva. Argumentos Dedutivo e Argumentos Indutivos. Exemplos 1).Todo homem é mortal. Sócrates é um homem ◊ Sócrates é mortal 2). Freqüentemente quando chove fica nublado. Está chovendo ◊ Está nublado Dedutivo (“ Arg. Válido”) Indutivo (“Arg. Inválido”)

26 Validade e Probabilidade Indutiva. Argumentos Dedutivo e Argumentos Indutivos. Exercícios 1). O sol nasceu todas as manhãs até hoje ◊ Logo, o sol vai nascer amanhã. 2). Só há fogo se houver oxigênio. Na lua não há oxigênio. ◊ Logo, na lua não pode haver fogo.

27 Validade e Probabilidade Indutiva. Argumentos Dedutivo e Argumentos Indutivos. Exercícios 3). Se houver uma guerra nuclear, a civilização será destruída.. Haverá uma guerra nuclear ◊ A civilização será destruída por uma guerra nuclear. 4). O ouro conduz eletricidade e é um metal.. O ferro, o zinco, o bronze, a prata também são metais e conduzem eletricidade. ◊ Logo, todo metal conduz eletricidade.

28 Argumento Dedutivo e Argumento Indutivo: Exercícios 5). Todos tem um e um só pai biológico.. Os irmãos tem o mesmo pai biológico.. Ninguém é pai biológico de si mesmo.  Não há pai biológico que seja também seu irmão.

29 Argumento Dedutivo e Argumento Indutivo: Exercícios 6). Os visitantes da china quase nunca contraem malária no país.. José está visitando a China.  José não contrairá malária na China. 7). Eu sonho com monstros.. Meu irmão sonha também com monstros.  Todas as pessoas sonham com monstros.

30 Argumento Complexo Exercícios 8)"Todos os argumentos são ou indutivos ou dedutivos. O que você está lendo agora é um argumento. Este argumento não é indutivo. Este argumento é dedutivo." 9)"Não existe o maior número primo. Mas de todos os números primos sempre podemos imaginar que certamente existe um maior. Logo, existem números primos maiores do que qualquer um que possamos imaginar."

31 Argumentos Qual o tipo de argumento que estudaremos? A Lógica Formal estuda o argumento dedutivo no sentido tradicional O objetivo da Lógica Formal é mostrar a validade de certas formas de argumento (estruturas). O estudo das formas de argumento facilita a verificação da validade dos argumentos. Na Lógica formal estudaremos formas básicas do raciocínio lógico de um ponto de vista sintático (manipulação de símbolos) e em seguida os princípios semânticos que justificam estas formas de raciocínio.

32 Lógica Proposicional

33 Até agora estudamos a Lógica de maneira informal. A Lógica formal é o estudo de formas de argumento, isto é, regras de raciocínio comum em vários argumentos.

34 Formas de Argumento Exemplos: 1.. Hoje é segunda-feira ou sexta-feira.. Hoje não é segunda-feira.  Hoje é sexta-feira. 2.. Rembrandt pintou a Mona Lisa ou Michelângelo a pintou.. Não foi Rembrandt quem a pintou.  Michelângelo pintou a Mona Lisa. 3.. Ele é menor de 18 anos ou é um irresponsável.. Ele não é menor de 18 anos.  Ele é um irresponsável.

35 Formas de Argumento Os 3 argumentos são da seguinte forma:. P ou Q. Não é o caso que é P  Q As letras P e Q representam sentenças declarativas: (símbolos sentenciais). P pode representar: Hoje é segunda-feira. Q pode representar: Hoje é sexta-feira.

36 Formas de Argumento A lógica trata de formas de argumentos que consistem de letras sentenciais combinadas com as expressões: Não é o caso que negação Econjunção Oudisjunção Se... Então implicação ou condicional Se e somente se bi-implicação, equivalência ou bicondicional Essas expressões são chamadas de operadores ou conectivos lógicos.

37 Formas de Argumento Conectivo Não é o caso que Essa expressão prefixa uma sentença para formar uma nova sentença, a negação da primeira. Exemplo: ‘Não é o caso que ele é fumante‘ é a negação da sentença ‘Ele é fumante'. Variações gramaticais dessa negação: ´Ele é não-fumante’, ´Ele não é fumante’ ´Ele não fuma’.

38 Formas de Argumento Conectivo E Uma composição constituindo-se de duas sentenças ligadas por 'e' chama-se conjunção. Exemplo: Chove e faz calor Obs: em linguagem natural, ‘e’ às vezes sugere sequencia temporal Ele ganhou na loto e enriqueceu. A conjunção também pode ser expressa por palavras como: 'mas', 'todavia', 'embora', 'contudo', ‘além do mais’, ‘no entanto’, ‘apesar disso’... Chove mas faz calor

39 Formas de Argumento Conectivo Ou Um enunciado composto consistindo de duas sentenças ligadas por 'ou' chama- se disjunção. Exemplo: Chove ou faz calor

40 Formas de Argumento Conectivo Se... então Enunciados do tipo se... então... chamam-se condicionais ou implicações. O enunciado subseqüente ao 'se' chama-se o antecedente e o subseqüente ao 'então' chama-se o conseqüente. Forma do condicional: Se antecedente então conseqüente Ex: Se sinto frio então visto o casaco

41 Formas de Argumento Conectivo Se... então Uma implicação também pode ser expressa na ordem inversa. Visto o casaco se sentir frio mantém a semântica de Se sentir frio, visto o casaco Se sentir frio então visto o casaco

42 Formas de Argumento Conectivo Se... então Variações gramaticais da implicação: Se P então Q P implica em Q; P, logo Q P só se Q; P somente se Q P apenas se Q; P só quando Q Q se P ; Q segue de P

43 Formas de Argumento Conectivo Se e somente se Os enunciados formados com a expressão...se e somente se... são chamados bicondicionais ou equivalências. Exemplo: T é um triângulo se e somente se T é um polígono de três lados

44 Formas de Argumento Conectivo Se e somente se Um bicondicional pode ser considerado uma conjunção de dois condicionais: 1. P se e somente se Q 2. P se Q e P somente se Q 3. Se Q então P e P somente se Q 4. Se Q então P e Se P então Q que equivale a: 5. Se P então Q e Se Q então P

45 Formas de Argumento Formalização Para facilitar o reconhecimento e comparação de formas de argumento, cada operador lógico é representado por um símbolo: Não é o caso que(Negação): ~ ou ┐ E(Conjunção): ^ ou & Ou(Disjunção): v Se... Então(Implicação):  Se e somente se(Equivalência): 

46 Formalização: Linguagem da Lógica Proposicional Alfabeto Símbolos de pontuação: ( ), Símbolos de verdade: true, false Símbolos proposicionais: P, Q, R, S, P1, Q1, P2, Q2... Conectivos proposicionais: ,v,^, , 

47 Linguagem da Lógica Proposicional (cont.) Fórmula Todo símbolo de verdade ou proposicional é uma fórmula da Lógica Proposicional Se H é fórmula então (  H) também é Se H e G são fórmulas, então (HvG), (H^G), (H  G) e (H  G) também são

48 Exercícios: 1) Quais das expressões seguintes são fórmulas e quais não são: a)    R b)(  R) c)PQ d)  (P  Q) e)  (  P ^  Q)

49 Linguagem da Lógica Proposicional (cont.) Ordem de precedência  ,  ^,v Subfórmula: Se H é fórmula H é uma subfórmula Se H=(  G), então G é subfórmula de H Se H é do tipo (EvG), (E^G), (E  G) ou (E  G), então E e G são subfórmulas de H Se G é subfórmula de H, então toda subfórmula de G também é subfórmula de H

50 Linguagem da Lógica Proposicional (cont.) Tamanho de Fórmulas Inteiro positivo Representação: |A| |p| = 1, para toda fórmula atômica Quantidade de símbolos e conectivos preposicionais

51 Formas de Argumento Formalização Exemplo de formalização: Simbolize o argumento que segue e o represente na Forma Padrão. A proposta de auxílio está no correio. Se os árbitros a receberem até sexta-feira, eles a analisarão. Portanto, eles a analisarão se a proposta estiver no correio e eles a receberem até sexta-feira. (C, S, A)

52 Solução: A proposta de auxílio está no correio. Se os árbitros a receberem até sexta-feira, eles a analisarão. Portanto, eles a analisarão se a proposta estiver no correio e eles a receberem até sexta-feira. C: A proposta de auxílio está no correio. S: Os árbitros recebem a proposta até Sexta-feira. A: Os árbitros analisarão a proposta.. C. S  A. C^S  A {C, S  A, C^S  A } |-- A □ A

53 Formas de Argumento Composição de conectivos Nem... Nem... Nem José nem Maria estavam em casa J – José estava em casa M – Maria estava em casa ┐ (J ^M)

54 Formas de Argumento Formalização A linguagem consistindo das letras sentenciais e dos operadores lógicos juntamente com as regras a serem empregadas, chama-se a Lógica Proposicional ou Cálculo Proposicional. A palavra Cálculo é empregada no sentido de avaliação ou raciocínio e não no sentido de diferenciação ou integração O objetivo fundamental do Cálculo/Lógica é provar a validade de certas formas de argumento.


Carregar ppt "Lógica Introdução (slides modificados de Joseluce Cunha)"

Apresentações semelhantes


Anúncios Google