A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Capítulo 4 – Função do 2º Grau Prof. Daniel Keglis Matemática.

Apresentações semelhantes


Apresentação em tema: "Capítulo 4 – Função do 2º Grau Prof. Daniel Keglis Matemática."— Transcrição da apresentação:

1 Capítulo 4 – Função do 2º Grau Prof. Daniel Keglis Matemática

2 4.1) Definição: Uma função f: R R chama-se função polinomial do 2º grau quando ela é do tipo f(x) = ax 2 + bx + c = 0, sendo a, b e c números reais e a 0. Exemplos: f(x) = 2x a = 2, b = 0 e c =-18 f(x) = - 3x 2 + 2x a = -3, b = 2 e c = 0 f(x) = 2x 2 +5x -2 a = 2 e b = 5 e c = -2

3 4.2 Zeros ou raízes da função do 2º grau: É o valor de x para qual a função polinomial do 2º grau f(x) = ax 2 + bx + c = 0, se anula, ou seja, quando f(x) = 0. Exemplo: Seja a função f(x) = x 2 - 2x -3 O zero ou raiz da função é determinado igualando a f(x) a zero. Através da fórmula de Bhaskara encontramos as raízes x = 3 e x = -1

4 4.3.1 Gráfico da função do 2º grau: xy(x,y) -25(-2,5) 0(-1,0) 0-3(0,-3) 1-4(1,-4) 2-3(2,-3) 30(3,0) 45(4,5) Veja a representação gráfica da função do 2º grau f(x) = x 2 - 2x -3

5 4.3.1 Gráfico da função do 2º grau:

6 4.3.2 Concavidades da parábola O gráfico da função quadrática será sempre uma parábola com concavidades voltadas para cima ou para baixo. Veja: a > 0 a < 0

7 4.3.3 Esboço gráfico da função do 2º grau No esboço gráfico de uma função quadrática, podem ocorrer os seguintes casos:

8 4.3.3 Esboço gráfico da função do 2º grau

9

10 4.3.3 Conclusões (Esboço Gráfico): Se a função do 2º grau em estudo tiver ∆ > 0, então terá 2 raízes reais e diferentes (x 1 x 2 ). Se a função do 2º grau em estudo tiver ∆ = 0, então terá 2 raízes reais e iguais (x 1 =x 2 ). Se a função do 2º grau em estudo tiver ∆ < 0, então não haverá raízes reais.

11 4.5 Coordenadas do vértice da parábola O vértice é um ponto notável da parábola muito importante. É ele que determina a inflexão da curva, ou seja, onde ela muda o seu sentido. Usamos as coordenadas X v e Y v para determinar o vértice da parábola. Essas expressões são obtidas através dos coeficientes da função quadrática.

12 4.6 Valor máximo e valor mínimo da função Considere as funções do 2º grau cujos os gráficos estão representados abaixo:

13 4.6 Valor máximo e valor mínimo da função Examinando os gráficos acima, podemos concluir que: Se a > 0, o vértice é o ponto da parábola que tem ordenada mínima. Nesse caso, o vértice é chamado de ponto mínimo (Valor Mínimo). Se a < 0, o vértice é o ponto da parábola que tem ordenada máxima. Nesse caso, o vértice é chamado de ponto máximo (Valor Máximo).

14 4.7 Pontos Notáveis da Parábola Para traçar o esboço gráfico de uma parábola, com praticidade, usamos alguns pontos notáveis da parábola. Ponto de intersecção da parábola com o eixo x (Raízes da função do 2º grau) Ponto de intersecção da parábola com o eixo y. (Ponto 0,c) O vértice da parábola. (X v e Y v ).

15 4.8 Conclusões: Observamos que o gráfico de uma função do 2º grau é sempre uma parábola. Quando a > 0 a parábola tem concavidade voltada para cima, a < 0 a parábola tem concavidade voltada para baixo. O coeficiente c é a ordenada do ponto (0,c) onde a parábola intercepta o eixo y. O zeros ou raízes da função são o pontos onde a parábola intercepta o eixo x, ou seja, onde f(x) = 0.

16 4.9 Estudo do Sinal da função do 2º grau O estudo do sinal de uma função do 2º grau recai sempre em um dos casos a seguir: ∆ > 0 ∆ = 0 ∆ < 0 Para a > 0

17 4.9 Estudo do Sinal da função do 2º grau Para a < 0 ∆ > 0 ∆ = 0 ∆ < 0

18 4.9 Aplicações: Podemos observar nas figuras abaixo situações de aplicação deste tipo de função:


Carregar ppt "Capítulo 4 – Função do 2º Grau Prof. Daniel Keglis Matemática."

Apresentações semelhantes


Anúncios Google