A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

INTRODUÇÃO À TEORIA DOS CONJUNTOS AULA 2: OPERAÇÕES COM CONJUNTOS.

Apresentações semelhantes


Apresentação em tema: "INTRODUÇÃO À TEORIA DOS CONJUNTOS AULA 2: OPERAÇÕES COM CONJUNTOS."— Transcrição da apresentação:

1 INTRODUÇÃO À TEORIA DOS CONJUNTOS AULA 2: OPERAÇÕES COM CONJUNTOS

2 UNIÃO DE CONJUNTOS Conjunto formado pelos elementos que estão em pelo menos um dos conjuntos trabalhados. Conjunto formado pelos elementos que estão em pelo menos um dos conjuntos trabalhados. A  B = {x/ x  A ou x  B} Exemplos: 1) Sejam A = {2,3,6,8} e B = {2,5,7,8}. A  B = {2,3,5,6,7,8}. A  B = {2,3,5,6,7,8}.

3 INTERSECÇÃO Conjunto formado pelos elementos que pertencem a todos os conjuntos com os quais trabalhamos simultaneamente. Conjunto formado pelos elementos que pertencem a todos os conjuntos com os quais trabalhamos simultaneamente. A  B = {x/ x  A e x  B} Ex: A = {2,3,6,8} e B = {2,5,7,8} A  B = {2,8}. A  B = {2,8}. A = {2,4,6,8,10,12}, B = {3,5,10} e C = {10,12,16] A  B  C = {10}.

4 Podemos representar a intersecção entre dois conjuntos em um diagrama com o uso de uma figura. ( A região sombreada indica a intersecção Quando a intersecção entre dois conjuntos é o conjunto vazio, ou seja, quando os conjuntos não possuem elementos em comum, eles são ditos disjuntos.

5 DIFERENÇA DE CONJUNTOS A diferença entre dois conjuntos A e B é o conjunto formado pelos elementos que estão em A, mas não estão em B A - B = {x/ x  A e x  B} Da mesma forma que a diferença entre B e A é o conjunto formado pelos elementos que estão em B, mas não estão em A. B – A = {x/ x  B e x  A}

6 Por exemplo: Sejam A = {3,6,9,12,15,18} e B = {5,10,15,20,25} A – B = {3,6,9,12,18} B – A = {5,10,20,25}

7 Podemos indicar a diferença por meio de figuras. Podemos representar A – B por: Já o conjunto B – A poderia ser representado por:

8 Observação: Se tivermos B  A, a diferença A – B será chamada complementar de B em relação a A e será indicada por: C A Dessa forma, temos que: C A Observação: Se tivermos B  A, a diferença A – B será chamada complementar de B em relação a A e será indicada por: C A B Dessa forma, temos que: C A B = A - B Por exemplo: A = {2,4,6,8,10,12,14} e B = {4,8,12} temos que C A Por exemplo: A = {2,4,6,8,10,12,14} e B = {4,8,12} temos que C A B ={2,6,10,14}


Carregar ppt "INTRODUÇÃO À TEORIA DOS CONJUNTOS AULA 2: OPERAÇÕES COM CONJUNTOS."

Apresentações semelhantes


Anúncios Google