A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

(Exemplo) Obter a equação geral e reduzida da circunferência. Equação reduzida da circunferência : Centro da circunferência : C = (a,b) r  Raio da circunferência.

Apresentações semelhantes


Apresentação em tema: "(Exemplo) Obter a equação geral e reduzida da circunferência. Equação reduzida da circunferência : Centro da circunferência : C = (a,b) r  Raio da circunferência."— Transcrição da apresentação:

1

2 (Exemplo) Obter a equação geral e reduzida da circunferência. Equação reduzida da circunferência : Centro da circunferência : C = (a,b) r  Raio da circunferência : Para encontrar a equação geral, é só desenvolver os produtos notáveis a partir da equação reduzida da circunferência (“chuveirinho”).

3 (Questão 04 pág. 04) Obter a equação da circunferência que passa pelos pontos A(3;4) e B(0;7) e que tem centro no eixo das abscissas.

4 (Questão 04 pág. 04) Obter a equação da circunferência que passa pelos pontos A(3;4) e B(0;7) e que tem centro no eixo das abscissas.

5 (Questão 04 pág. 04) Obter a equação da circunferência que passa pelos pontos A(3;4) e B(0;7) e que tem centro no eixo das abscissas.

6 (Questão 04 pág. 04) Obter a equação da circunferência que passa pelos pontos A(3;4) e B(0;7) e que tem centro no eixo das abscissas.

7 (Questão 03 pág. 04) Determinar a equação da circunferência circunscrita ao quadrado ABCD onde A(2;0); B(4;2); C(2;4) e D(0;2).

8 (Questão 04 pág. 09) (FUVEST – MODELO ENEM) – Das regiões hachuradasna sequência, a que melhor representa o conjunto dos pontos (x; y), do plano cartesiano, satisfazendo ao conjunto de desigualdades

9

10 (Questão 01 pág. 06) Determinar o centro e o raio das circunferências nas questões de 1 a 5. x 2 + y 2 = 16

11 (Questão 02 pág. 06) Determinar o centro e o raio das circunferências nas questões de 1 a 5. (X – 3) 2 + (y –2) 2 = 25

12 (Questão 03 pág. 06) Determinar o centro e o raio das circunferências nas questões de 1 a 5. (X +1) 2 + (y – 3) 2 = 5

13 (Questão 04 pág. 06) Determinar o centro e o raio das circunferências nas questões de 1 a 5. x 2 + y 2 – 4x – 6y – 11 = 0

14 (Questão 05 pág. 06) Determinar o centro e o raio das circunferências nas questões de 1 a 5. x 2 + y 2 – 4x +8y – 5 = 0

15 (Questão 06 pág. 06) Determinar o centro e o raio das circunferências nas questões de 1 a 5. x 2 + y 2 – 4x +8y – 5 = 0

16 (Questão 01 pág. 11) Determinar a posição da reta x – y – 2 = 0 em relação à circunferência x 2 + y 2 = 2.

17

18 (Questão 02 pág. 11) Obter o comprimento da corda que a circunferência de equação x 2 + y 2 – 2x + 4y – 3 = 0 determina no eixo das abscissas.

19 (Questão 03 pág. 11) Calcular o comprimento da corda determinada pela re ta x – y = 0 sobre a circunferência (x – 1) 2 + (y + 1) 2 = 4 Esta é a forma gráfica onde através do desenho, há uma melhor visualização da questão

20 (Questão 03 pág. 11) Calcular o comprimento da corda determinada pela re ta x – y = 0 sobre a circunferência (x – 1) 2 + (y + 1) 2 = 4 (a mesma questão resolvida de outra forma)

21 (Questão 04 pág. 11) Determinar a posição relativa das circunferências λ 1 de equação x 2 + y 2 – 2y = 0 e λ 2 de equação x 2 + y 2 – 2x – 8 = 0.

22 Aula de Matemática 08 agosto 2007 – prof. Neilton Satel Geometria Espacial 1- CILINDROS 2 - CONES Quadro pintado por PAVÃO (aquele que ficava em frente ao bradesco)

23 ( Questão 01 pág. 13) (FGV-adaptado) – No plano cartesiano, a reta de equação x = k tangencia a circunferência de equação (x – 5) 2 +(y–3) 2 = 4. Os valores de k são: a)– 2 ou 0 b)– 5 ou 5 c) 9 ou 1 d) 7 ou 3 e) 8 ou 4 RESOLUÇÃO: A circunferência (x – 5) 2 + (y – 3) 2 = 4 tem centro C(5;3) e raio 2. A reta x = k é vertical e tangente à circunferência, portanto com equação x = 7 ou x = 3.


Carregar ppt "(Exemplo) Obter a equação geral e reduzida da circunferência. Equação reduzida da circunferência : Centro da circunferência : C = (a,b) r  Raio da circunferência."

Apresentações semelhantes


Anúncios Google