A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Cap. 3 – Estática dos fluidos 3.1 – Equação básica Forças de massa (ou de campo) y p p dy y x z p.

Apresentações semelhantes


Apresentação em tema: "Cap. 3 – Estática dos fluidos 3.1 – Equação básica Forças de massa (ou de campo) y p p dy y x z p."— Transcrição da apresentação:

1 Cap. 3 – Estática dos fluidos 3.1 – Equação básica Forças de massa (ou de campo) y p p dy y x z p

2 y x z p

3 Força total atuando em um elemento de fluido:

4 Fluido estático : Força total atuando em um elemento de fluido = 0 Equação Básica

5 y x z Se o sistema de coordenadas for posicionado de tal maneira que o eixo z coincida com a vertical e direcionado para cima, tem-se:

6 3.2 – Variação da pressão em um fluido estático Peso específico do fluido y x z

7 Pressão absoluta: Pressão positiva a partir do vácuo completo. Pressão manométrica ou relativa: Diferença entre a pressão medida e a pressão atmosférica local. Escalas de pressão 0 (vácuo absoluto) p-atm (pressão atmosférica local) p p

8 Manômetro de coluna (medição de pressão) A pressão absoluta, p 1, será conhecida se for conhecida a pressão atmosférica local, p ATM, bem como as demais grandezas. A pressão relativa, p 1r, é obtida ao passarmos o termo da pressão atmosférica local, p ATM, para o lado esquerdo da equação:

9 3.3 – Atmosfera padrão Unidades de pressão: - mmHg (milimetros de mercúrio) - mH 2 0 (metro de água) - psi (libras por polegada quadrada) - kgf/cm 2 (quilograma-força por centímetro quadrado) - Pascal (N/m 2 ) - bar (10 5 N/m 2 ) - mbar (10 2 N/m 2 ) CNTP temperatura e pressão de 273,15 K e Pa CPTP (Condições Padrão de Temperatura e Pressão),Condições Padrão de Temperatura e Pressão com valores de temperatura e pressão de 273,15 K (0 °C) e Pa = 1 bar.K°CPa

10

11 Exemplo: Calcule a pressão atmosférica em Curitiba e em uma localidade à m de altitude, considerando que ao nivel do mar a temperatura é 30 o C e a pressão atmosférica é 101,325 N/m 2, e que a temperatura do ar decresce 65 o C a cada 10 km de altura.

12 Curitiba z=920 m.

13 3.4 – Sistemas hidráulicos

14 3.5 – Forças hidrostáticas sobre superfícies submersas

15 Comporta tipo Segmento Comporta tipo Vagão

16 Comporta tipo basculante com acionamento hidráulico

17 Comporta tipo basculante com acionamento por correntes

18 Comporta tipo basculante com acionamento hidráulico

19 Contra-peso para facilitar acionamento de comporta

20 h (sobre a) Estrutura p (sobre o) Fluido

21 h Forças na Estrutura h = y - h 1 y (sistema de referência) L Força resultante na estrutura (elemento de área na estrutura) x dh H

22 h Ponto de aplicação da força resultante na estrutura y L Momento da força resultante em torno do ponto O (por exemplo) é equivalente ao momento das forças de pressão em torno de O. x dh H O y´ é a posição na vertical (linha tracejada vermelha) do ponto de aplicação da força resultante, F R.

23 A Exemplo 1 : Calcular as reações nos apoios da comporta plana vertical, de profundidade W, da figura: H X Força no elemento de área da estrutura O h y h=y+h 1 dh=dy Sistema de referência: x Incógnitas: 4 componentes de reações nos apoios A) Cálculo da resultante das forças de pressão na estrutura Resultante das forças de pressão na estrutura

24 H A X O h y x B) Balanço das forças que atuam na estrutura: C) Balanço dos momentos nos apoios da estrutura: + r

25 H A X O h y x + r

26 H A X O h y x + r

27 D) Sistema de equações finalE) Dados W=6 [m] H=6 [m]h 1 =3 [m] X=12 [m] Sistema estaticamente indeterminado

28 H A X O h y x Nestas condições, é normal admitir que o apoio em A não transmite forças na direção horizontal, e portanto:

29 Exemplo 2 : Calcular as reações nos apoios da comporta plana inclinada, de profundidade W, da figura abaixo: x h y A O D L Diagrama de corpo livre:

30 x h y A O D L l A) Cálculo da força resultante devido à pressão do fluido

31 x h y A O D L l

32 B) Balanço das forças que atuam na estrutura: Diagrama de corpo livre: x y Para que o sistema não seja estaticamente indeterminado, consideraremos: C) Balanço dos momentos no apoio da estrutura: + T l

33 x y T l h D

34 D) Sistema de equações final E) Dados W=1 [m]=30 o L=4 [m] D=2 [m] x y T l h D A

35 h D=2 m A L=4 m W=1 m

36 Método simplificado utilizando propriedades geométricas das superfícies planas Momento de primeira ordem da área A em relação ao eixo x yc é a coordenada do centróide da área medida a partir do eixo x que passa por 0 (nível do fluido) Módulo Força Resultante:

37 Momento de segunda ordem da área A em relação ao eixo x Ponto de Aplicação da Força Resultante, y R :

38

39 Produto de Inércia da área A em relação aos eixos x e y Ponto de Aplicação da Força Resultante, x R :

40 Exemplo 3 : Calcular as reações nos apoios da comporta plana inclinada, de profundidade W, da figura abaixo: h A B D L Diagrama de corpo livre:

41 3.6 – Empuxo e estabilidade Empuxo = Peso Específico do fluido x Volume deslocado

42 Exemplo : Determine a massa específica de um corpo que, ao ser mergulhado em óleo de densidade igual a 0,8, se equilibra com 20% do seu volume acima da superfície do fluido (despreze o efeito do empuxo na atmosfera) Em equilíbrio: Força peso = Empuxo

43 3.7 – Fluidos em movimento de corpo rígido Fluido não está estático : Força total atuando em um elemento de fluido: Gradiente de uma grandeza escalar em: Coordenadas cartesianas: Coordenadas cilíndricas:

44 Exemplo: Determine a borda livre da lateral de um reservatório retangular para transportar água sem transbordar quando sujeito a uma aceleração de 3 vezes a aceleração da gravidade na direção horizontal. H nH 3H

45 x y Campo de pressão Na superfície livre a pressão é constante, portanto:

46 x y 1 3 H nH 3H H+nH


Carregar ppt "Cap. 3 – Estática dos fluidos 3.1 – Equação básica Forças de massa (ou de campo) y p p dy y x z p."

Apresentações semelhantes


Anúncios Google