A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

VARIÁVEL ALEATÓRIA Professor: WALDEMAR SANTA CRUZ OLIVEIRA JR UNIVERSIDADE FEDERAL DE PERNABUCO - UFPE Curso: SECRETARIADO Disciplina: ELEMENTOS DE ESTATÍSTICA.

Apresentações semelhantes


Apresentação em tema: "VARIÁVEL ALEATÓRIA Professor: WALDEMAR SANTA CRUZ OLIVEIRA JR UNIVERSIDADE FEDERAL DE PERNABUCO - UFPE Curso: SECRETARIADO Disciplina: ELEMENTOS DE ESTATÍSTICA."— Transcrição da apresentação:

1 VARIÁVEL ALEATÓRIA Professor: WALDEMAR SANTA CRUZ OLIVEIRA JR UNIVERSIDADE FEDERAL DE PERNABUCO - UFPE Curso: SECRETARIADO Disciplina: ELEMENTOS DE ESTATÍSTICA ET-301

2 Def. Dado um espaço amostral Ω, definimos como Variável Aleatória VA qualquer função X que associe a cada elemento em Ω um número real. Ou seja, Uma VA X leva cada ω em apenas um número real X(Ω) = x.

3 Exemplo: Considere uma urna com três bolas vermelhas e duas brancas. Sorteamos duas bolas sem reposição. Então, o número de bolas brancas sorteadas é uma VA. Ω = { } X(BB) = X(VB) = X(BV) = X(VV) =

4 Exemplo: Uma aeronave com capacidade para trinta passageiros tem um custo operacional de R$ 1.500,00 para voar de Recife a Maceió. A empresa XXX LTDA proprietária desta aeronave opera esta rota. Sabe-se que se o preço da passagem de Recife a Maceió for R$ 120,00, a probabilidade de vender apenas dez passagens é de 5%, de vender vinte passagens é de 25% e de vender todas as passagens é de 70%. Então, o lucro é uma variável aleatória que assume os valores:

5 Def. Uma VA que assume valores em apenas um conjunto enumerável da reta é dita ser discreta. Exemplo: Seja X o número de caras no lançamento de n moedas. Exemplo: Seja X um número real selecionado no intervalo [0,1]. Aqui X não é discreta. Def. Seja X uma VA discreta que assume os valores x 1 ; x 2 ;... ; então, definimos a função de probabilidade p(x i ) ou apenas p i como a probabilidade de X ser igual a x i. Ou seja, p i = p(x i ) = P(X = x i ) Exemplo: Encontre a função de probabilidade dos exemplos anteriores.

6 Como uma VA associa todos os elementos de Ω a um número real, no caso discreto, temos duas propriedades da função de probabilidade, Obs. É comum chamar a função de probabilidade de distribuição de probabilidade de X: Exemplo Uma moeda é lançada três vezes. Seja X a VA definida como o número de caras que aparece nos lançamentos. Determine a distribuição de probabilidade de X.

7 Esperança e Variância Seja X uma VA discreta que assume os valores x1, x2,..., definimos a Esperança de X; ou o valor Esperado de X; ou a Esperança Matemática de X, ou a média de X; ou o valor médio de X, como. E a Variância de X como E o Desvio Padrão de X como a raiz quadrada da variância

8 Exemplo: Calcule a esperança, a variância e o desvio padrão nos exemplos anteriores Def. Dadas uma VA X e uma função h(X) desta VA definimos a esperança de h(X) como Exemplo: Seja X a VA definida como o número de caras em um lançamento de duas moedas honestas. Calcule a esperança e a variância da VA Y=3X+5 E de maneira similar definimos a variância de h(X) como

9 Propriedades da Esperança e da Variância Exemplo: Calcule a variância no exemplo anterior usando esta fórmula

10 Função de Distribuição Acumulada F(x): Dada uma VA X definimos a Função de Distribuição Acumulada F(x) como a probabilidade da VA X ser menor ou igual a x: Ou seja, Obs. Também é comum chamar F(x) apenas de função de distribuição. Não confundir distribuição de probabilidade de X com função de distribuição de X. Exemplo: Nos exemplos anteriores construa os gráficos da distribuição de probabilidade e da função de distribuição da VA X.

11 Exemplo: Seja X a VA o valor da face voltada para cima no lançamento de um dado honesto. Construa o gráfico da distribuição acumulada F(x), determine F(0); F(0,33); F(2); F(2,58); F(7) e calcule a esperança e a variância de X Exemplo: Seja X a VA o valor da soma das faces voltadas para cima no lançamento de dois dados honestos. Construa o gráfico da distribuição acumulada F(x), determine F(0); F(1); F(2); F(2,58); F(7); F(8,595) ; F(12,1) e calcule a esperança e a variância de X

12 Exemplo: O lucro L de determinada empresa é uma VA com a seguinte distribuição de probabilidade: Construa o gráfico da distribuição acumulada do lucro. Determine a probabilidade: do lucro ser menor que R$ 100,00; menor que R$ 250,00; menor ou igual a R$ 250,00; menor que R$ 400,00. Calcule o lucro médio e a variância do lucro. LucroProbabilidade R$ 100,0010% R$ 150,0040% R$ 200,0030% R$ 250,0015% R$ 300,005%


Carregar ppt "VARIÁVEL ALEATÓRIA Professor: WALDEMAR SANTA CRUZ OLIVEIRA JR UNIVERSIDADE FEDERAL DE PERNABUCO - UFPE Curso: SECRETARIADO Disciplina: ELEMENTOS DE ESTATÍSTICA."

Apresentações semelhantes


Anúncios Google