A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Operações com Naturais Prof. Adriano Vargas Freitas UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO.

Apresentações semelhantes


Apresentação em tema: "Operações com Naturais Prof. Adriano Vargas Freitas UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO."— Transcrição da apresentação:

1 Operações com Naturais Prof. Adriano Vargas Freitas UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO I

2 Multiplicação e Divisão de números Naturais

3 Pra início de conversa... Todos nós, professores, temos encontrado crianças e jovens que, embora dominem as regras e fatos relacionados à multiplicação e à divisão com números naturais, encontram grandes dificuldades para decidir “qual operação resolve” um determinado problema. Mesmo com a calculadora disponível, se não souber definir o que fazer, o aluno não conseguirá resolver o problema. Assim, a grande preocupação do educador matemático, hoje, é levar o aluno a construir os significados de cada operação, diante das diversas situações em que essas operações podem aparecer. Isso não significa que as técnicas operatórias usuais serão desprezadas. O trabalho com elas deve ser feito, sempre justificado pelas leis que regem o Sistema de Numeração Decimal, de modo que os estudantes possam compreender cada procedimento realizado.

4 Formalizando a multiplicação: Exemplos de atividades 1)Podemos trabalhar com as ideias de multiplicação como sendo uma adição de parcelas iguais. 2) Podemos propor situações problemas que envolvam essas operações. 3)Podemos utilizar atividades em que a multiplicação seja utilizada para fazer ampliações de figuras planas (ex.: duplicando os lados de um triângulo). 4)Podemos utilizar atividades diversas envolvendo situações problemas. 5)Podemos utilizar atividades que envolvam a tabuada de multiplicação. Ideias da multiplicação: adição de parcelas iguais, cálculo do número de possibilidades.

5 Observações importantes: (1) -Na multiplicação 4 x 5 = 20, o 4 e o 5 são chamados de fatores, o 20 é o produto. -O produto de um número por 2 é chamado dobro, por 3 triplo, por 4 quádruplo, etc... - A multiplicação possui as seguintes propriedades: (para números naturais). Comutativa: 4 x 5 = 5 x 4 (a ordem dos fatores não altera o produto).. Elemento neutro: 4 x 1 = 4 (o número um é o elemento neutro da multiplicação).. Associativa: 3 x (2 x 1) = (3 x 2) x 1 (numa multiplicação de três números naturais quaisquer, podemos associá-los de modos diferentes, sem alterar o produto.. Distributiva: 5 x (8 + 3) = 5 x x 3 (o produto de um número natural por uma soma (ou subtração) de números naturais pode ser obtido multiplicando-se esse número pelos termos da soma e, em seguida, somando-se (ou subtraindo-se) os produtos parciais.

6 Formalizando a divisão: O primeiro número que é o maior é denominado dividendo e o outro número que é menor é o divisor. O resultado da divisão é chamado quociente. Se multiplicarmos o divisor pelo quociente obteremos o dividendo. Ideias da divisão: Repartir em partes iguais, medir para saber quanto caberá em cada agrupamento

7 ATENÇÃO: Na Divisão com números naturais não temos as propriedades: Fechamento: Esta propriedade não é satisfeita pela divisão, pois, por exemplo, 1 dividido por 2 não pertence aos conjunto dos números naturais. Associatividade: Esta propriedade não é satisfeita, pois (15 : 5) : 3 é diferente de (3 : 5) :15, por exemplo. Existência de Elemento Neutro: Esta propriedade não é satisfeita, pois, por exemplo, 2 dividido por 1 é 2, mas 1 dividido por 2 não pertence aos naturais. Comutatividade: Esta propriedade não é satisfeita, pois, por exemplo, 2 dividido por 1 é diferente de 1 dividido por 2, o qual nem pertence aos naturais.

8 O zero na divisão: Quando o dividendo é zero e o divisor é diferente de zero, o quociente é sempre zero. Exemplos: 0 : 8 = 0, porque 0 x 8 = 0 0 : 15 = 0, porque 0 x 15 = 0 Não existe divisão por zero. 8 : 0 = nenhum número, porque nenhum número x 0 = 8

9 A multiplicação e a divisão exata relacionam- se uma com a outra. Observe: se 6 x 7 = 42 então, 42 : 6 = 7 e 42 : 7 = 6

10 Ex.: Dona Jurema fez três bolos com a mesma receita. Em cada bolo, ela colocou 5 ovos. Quantos ovos usou nesses bolos?

11 A divisão está intimamente relacionada à multiplicação, surgindo como sua operação inversa, nas situações-problema. Os problemas que envolvem divisão de números naturais sempre se referem a uma coleção de elementos organizados em uma certa quantidade de grupos, sendo que cada grupo possui a mesma quantidade de elementos. Ex.: Dona Jurema fez 3 bolos iguais, gastando ao todo 15 ovos. Quantos ovos são necessários para cada bolo? Ou Dona Jurema tem 15 ovos e vai fazer bolos que gastam 5 ovos cada um. Quantos bolos Dona Jurema poderá fazer?

12 Ideias de registro das operações :

13 Usar ou não a tabuada? "Ter a tabuada na ponta da língua libera o aluno para se preocupar com outros desafios do problema. No entanto, antes de decorá-la, ele deve compreendê-la por meio de atividades que mostrem a relação entre os números e as propriedades da multiplicação, como a proporcionalidade e a comutatividade (sem que para isso seja necessário apresentar a definição delas). Se 6 é o dobro de 3, todos os resultados da tabuada do 6 são o dobro dos resultados da do 3. Caso não se lembre que 8 x 4 = 32, a criança pode buscar na memória o resultado de 4 x 8, que parece mais simples e é o mesmo. Outra conclusão a que ela pode chegar: se 7 x 10 = 70, para saber quanto é 7 x 9, basta subtrair 7 desse resultado para chegar a 63. "Tudo passa a fazer sentido e fica fácil decorar", completa. (Leika Watabe, formadora de professores da Secretaria Municipal de Educação de São Paulo)

14 Sugestão: Quadro da Tabuada Há várias atividades a serem propostas com o uso da tabela, que serve, inclusive, de material de diagnóstico dos estudantes. Compreendido seu funcionamento, eles podem, por exemplo, preencher somente as tabuadas do 5 e do 10 para verificar que os resultados da primeira correspondem à metade dos resultados da segunda. Dessa forma, a turma pode tirar diversas conclusões e ir memorizando os valores ou encontrá-los com facilidade. Só depois de um trabalho sistemático é adequado afixar a tabela em sala de aula para ser consultada sempre que necessário.

15 Não se aprendem as propriedades desconectadas de seu uso. Elas se constituem como ferramentas que nos permitem justificar e compreender procedimentos de cálculo. Para trabalhar o assunto, proponha que as crianças resolvam alguns cálculos, como: 2 x 4 4 x 2 3 x 2 2 x 3 5 x 3 3 x 5 Em seguida, peça que analisem e comparem os resultados da primeira e da segunda coluna e digam o que observaram. Elas devem concluir que os resultados se repetem. Indague por que elas acham que isso acontece e se sempre é assim. Desafie a turma a propor outras multiplicações e experimentar inverter a ordem dos números. Libere o uso da calculadora para que possam confirmar o produto dos cálculos mais rapidamente e constatar a regularidade.

16 é possível explorar várias relações. Por exemplo: será que todo número vezes 3 é ímpar? E quando é multiplicado por 6? Sempre que é preciso multiplicar por 10, basta acrescentar um 0 após o número? Por que um número vezes 1 é igual a ele mesmo? "Quando os estudantes constroem uma rede de relações entre os números, eles conseguem compreender a tabuada e decorar os resultados da multiplicação com mais facilidade" (Profa. Priscila Monteiro)

17

18 2. Marcelo e seus dois irmãos juntaram 345 reais e agora vão dividir igualmente entre os três. Marcelo resolveu o problema da seguinte forma: Mateus, irmão do Marcelo, registrou assim: Interprete o que Marcelo e Mateus fizeram para resolverem o problema. Você usaria outro registro procedimento? Qual?

19 3. Marina vai viajar e pretende levar 2 saias e 3 blusas de modelos diferentes. Veja o desenho que ela fez. De quantas maneiras ela pode se arrumar, usando uma saia e uma blusa?

20 Um pouco de história... A multiplicação realizada por outros povos...

21 A multiplicação na Índia: Os matemáticos hindus desenvolveram um método de multiplicação através de tábuas quadriculadas. Mais tarde os árabes o levaram para a Europa e o método ficou conhecido como MÉTODO DA GELOSIA Obs.: Cada quadradinho da tabela é obtido multiplicando-se linha X coluna.

22 Ex.: Para multiplicar 45 por 37 procede-se do seguinte modo: - seleccionam-se as tiras desejadas; - colocam-se como se vê na figura seguinte (fig. 1); - o resultado obtém-se somando os valores das colunas oblíquas, da direita para a esquerda; - a primeira coluna oblíqua tem apenas um valor, 5, e este será o algarismo das unidades; - na segunda coluna oblíqua temos 8, 3, 5 que somados dão 16, o algarismo 6 será o das dezenas enquanto que o algarismo 1 irá ser adicionado ao resultado da coluna oblíqua seguinte; - na terceira coluna oblíqua adiciona-se os algarismos 2, 2, 1 com o 1 que "vem" da coluna anterior e obtemos 6, sendo este o algarismo das centenas; - a quarta coluna tem somente o 1 que é o algarismo dos milhares.

23 A multiplicação na China: Os chineses usavam um método prático utilizando varetas de bambu. Podemos considerar esse método como uma variação do método da gelosia dos hindus. As varetas são dispostas na horizontal e na vertical, representando o multiplicador e o multiplicando. Os pontos de intersecção das varetas são contados e representarão as multiplicações. É o método da MULTIPLICAÇÃO DAS VARETAS

24

25 Para próxima aula: Lista de exercícios 2

26 “As crianças precisam saber que podem criar, pensar por si mesmas, reinventar e reformular o que não está bom, em vez de repetir indefinidamente as soluções que outros lhe ensinaram. Se as bases forem sólidas, se seus primeiros passos forem seguros, poderão atingir o período formal de desenvolvimento com capacidade de fazer abstrações, generalizações, de estabelecer relações entre o que existe.” Ramos, Luzia Faraco Conversas sobre números e operações, Ática, 2009.


Carregar ppt "Operações com Naturais Prof. Adriano Vargas Freitas UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO."

Apresentações semelhantes


Anúncios Google