A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Parte 3 Estatística aplicada a métodos analíticos e controle de equipamentos Cássio Luís Fernandes de Oliveira Quimiometria.

Apresentações semelhantes


Apresentação em tema: "Parte 3 Estatística aplicada a métodos analíticos e controle de equipamentos Cássio Luís Fernandes de Oliveira Quimiometria."— Transcrição da apresentação:

1 Parte 3 Estatística aplicada a métodos analíticos e controle de equipamentos Cássio Luís Fernandes de Oliveira Quimiometria

2 Comparando da média com teste t O teste t é usado para comparar grupos de medidas para se determinar se são ou não diferentes entre si. Para se verificar se uma média é igual a outra faz se o teste da HIPÓTESE NULA: As médias são iguais e só existem erros aleatórios. A estatística nos ajuda a obter a probabilidade que a diferença entre médias sejam devido somente a erros aleatórios. Geralmente, a hipótese nula é rejeitada se existe uma probabilidade menor que 5% do erro ser aleatório – ou seja, existe 95% de chance da conclusão estar correta.

3 Comparando da média com teste t Existem vários casos de comparação de médias: 1)Medidas repetidas de um analito e comparação com um valor de referência (a média obtida é igual ao valor de referência?). 2)Medidas repetidas de um analito em uma amostra, usando dois métodos diferentes fornecem duas médias diferentes (serão as médias iguais?). 3)Duas amostras distintas são medidas por dois métodos diferentes. Os métodos produzem resultados iguais?)

4 Comparando resultados medidos com um valor referência Imagine um problema como o formulado abaixo: Uma amostra de um reagente foi adquirida como sendo um material padrão de referência certificado pelo NIST e contendo 3,19 g/L de enxofre. Quatro medidas para quantificar enxofre neste padrão foram feitas no laboratório e resultou nos valores: 3,29 g/L, 3,22 g/L, 3,30 g/L e 3,23 g/L. ESTAS VALORES CONCORDAM COM O VALOR FORNECIDO PELO NIST??

5 Relembrando o cálculo da média e do desvio padrão:

6 Observações dos resultados O resultado mais baixo (3,22 g/L) é somente 0,9% maior que o certificado pelo NIST. O valor maior (3,30 g/L) é somente 3,4% maior que o certificado pelo NIST. A média dos resultados (3,26 g/L) é somente 2,2% superior ao certificado pelo NIST. O valor certificado pelo NIST está a menos de duas vezes do desvio padrão da média.

7 O resultado ideal da determinação da média O valor ideal das medidas de enxofre seria que a média fosse o próprio valor de referência (3,19 g/L). Supondo que somente erros aleatórios produziram diferenças no valor ideal e o obtido, pergunta-se: a média obtida, levando-se em conta o intervalo de confiança, é igual ou diferente do valor de referência? Como o intervalo de confiança leva em conta o t de Student, é através dele que deve se concluir se os valores correspondem ao referência.

8 Tomando que na situação ideal a média deveria ser o referência e a média obtida está dentro do intervalo de confiança, tem-se que: Fazendo algumas passagens matemáticas.... Comparando resultados medidos com um valor referência

9 Pela equação anterior pode-se, mediante a escolha de um nível de confiança para o t de Student (ex. 95%), da média, do desvio padrão e do valor de referência calcular o t ideal. Este t ideal (calculado) deve ter um valor tal que seja, pelo menos, menor que aquele t previsto (tabelado) para o nível de confiança desejado e com n-1 graus de confiança. Se t calculado > t tabelado, então a DIFERENÇA É SIGNIFICANTEMENTE DIFERENTE Se t calculado < t tabelado, então a DIFERENÇA NÃO É SIGNIFICANTEMENTE DIFERENTE Comparando resultados medidos com um valor referência

10 Se consideramos o nível de confiança de 95% e 3 graus de liberdade (n-1; 4-1) o t tabelado é de 3,182. Neste caso t calculado > t tabelado (3,41 > 3,182), o resultado obtido é diferente daquele do valor de referência. tabela A chance que se tenha acertado ao se concluir que eles são diferentes é > 95%. Comparando resultados medidos com um valor referência - Conclusão

11 Testes estatísticos não nos desobrigam a aceitar ou rejeitar um resultado. Os testes nos orientam na forma de PROBABILIDADES. Concluiu-se que a média é diferente do valor de referência seguindo um padrão de confiança estabelecido como 95% (seria diferente se fosse 98% ?). Esta conclusão foi obtida somente com quatro medidas. Para um maior nível de confiança seria necessário aumentar o número de repetições. Comparando resultados medidos com um valor referência ATENÇÃO!!!!

12 Comparando medidas repetidas Observe os resultados na determinação da massa de ar atmosférico contido em um certo volume obtido por dois métodos diferentes. Método 1 – gramasMétodo 2 – gramas 2,310172, ,309862, ,310102, ,310012, ,310242, ,310102, ,310282, ,29889 Média = 2,31011 e s = 0,000143Média = 2,29947 e s = 0,00138 Estes dois grupos de medidas repetidas fornecem resultados IDÊNTICOS ou DIFERENTES dentro de um intervalo de confiança??

13 Comparando medidas repetidas Para se responder a esta pergunta, mais uma deve ser feita: Os desvios-padrão dos dois conjuntos de dados são ou não significantemente diferentes entre si? Para responder esta última pergunta usa-se o teste F

14 Comparando medidas repetidas O valor de F calculado deve ser comparado com um valor de F tabelado para um dado nível de confiança. -Se o F calculado > F tabelado então os desvios-padrão são significantemente diferentes entre si. -Se o F calculado < F tabelado então os desvios-padrão não são significantemente diferentes entre si.

15 Comparando medidas repetidas O desvio padrão do método 1 é 0, O desvio padrão do método 2 é 0,00138

16 Comparando medidas repetidas Pela tabela F, levando-se em conta que o método de maior desvio (método 2) tem 8 medidas (7 graus de liberdade) e o método de menor desvio (método 1) tem 7 medidas (6 graus de liberdade), e assumindo nível de confiança 95%, chega-se

17 Comparando medidas repetidas Uma vez que determina-se que os desvios padrão são significativamente diferentes, para se chegar à conclusão se os resultados obtidos pelo método 1 é igual ou diferente do método 2, usa-se o valor calculado de t de Student e o compara com o tabelado usando-se as seguintes equações:

18 Equações para desvios-padrão diferentes Pela tabela de t de Student verifica-se que para 7 graus de liberdade e para 95% de confiança o t tabelado = 2,365 Ou seja: t calculado > t tabelado Então conclui-se que os resultados são significativamente diferentes. tabela t calculado = 21,7

19 E como seria se os desvios-padrão fossem iguais? Nos casos dos desvios-padrão iguais as equações seriam diferentes e, como exemplo de aplicação, supondo que os desvios-padrão obtidos nas duas técnicas fossem iguais: t calculado = 20,2 Pela tabela, usando 13 graus de liberdade: t tabelado = 2,228 > 2,131t calculado > t tabelado Mesmo assim os resultados seriam diferentes.

20 Comparando diferenças individuais Observe a problemática abaixo: Tem-se 6 amostras com diferentes quantidades de lipídeos e que foram analisadas por dois métodos diferentes (A e B). Os resultados estão em g/kg. O método B é diferente do método A ? AmostraMétodo AMétodo Bdiferença 11,461,420,04 22,222,38-0,16 32,842,670,17 41,971,800,17 51,131,090,04 62,352,250,10 Média da diferença = + 0,060

21 Comparando diferenças individuais Para se responder a esta pergunta realiza-se o teste t nas diferenças individuais entre os resultados de cada amostra:

22 Comparando diferenças individuais Para o exemplo temos então: t calculado = 1,20 e graus de liberdade = 6-1=5 t tabelado = 2,571 para 5 graus de liberdade e 95% de confiança Como t calculado < t tabelado então o método A pode ser comparado ao B, ou seja, há mais que 5% de chance que os dois métodos sejam iguais

23 FIM

24 Tabela F

25 Distribuição t de Student e o Intervalo de confiança 3,182


Carregar ppt "Parte 3 Estatística aplicada a métodos analíticos e controle de equipamentos Cássio Luís Fernandes de Oliveira Quimiometria."

Apresentações semelhantes


Anúncios Google