A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

a. Sistema de primeira ordem; b. gráfico do pólo

Apresentações semelhantes


Apresentação em tema: "a. Sistema de primeira ordem; b. gráfico do pólo"— Transcrição da apresentação:

1 a. Sistema de primeira ordem; b. gráfico do pólo
plano s

2 Resposta de um sistema de primeira ordem a um degrau unitário
Inclinação inicial Constante de tempo 1,0 0,9 0,8 0,7 63% do valor final para t = uma constante de tempo 0,6 0,5 0,4 0,3 0,2 0,1

3 DEFINIÇÕES Constante de Tempo para um sistema de primeira ordem é o tempo necessário para que a resposta ao degrau alcance 63% de seu valor final; Tempo de Subida para um sistema de primeira ordem é o tempo necessário para que a resposta ao degrau varie de 10% até 90% de seu valor final

4 DEFINIÇÕES Tempo de Estabilização para um sistema de primeira ordem é o tempo necessário para o que a resposta ao degrau alcance 98% do valor de estado estacionário da resposta

5 EXEMPLO: Resultados de laboratório de um ensaio com resposta de um sistema ao degrau. Encontre a Função de Transferência deste sistema 0,8 0,72 0,7 0,6 0,5 0,45 0,4 0,3 0,2 0,1 0,13 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Tempo (s)

6 Exemplo A resposta ao degrau mostrada no gráfico anterior foi traçada para:

7 EXEMPLO Calcule o Valor Final, Constante de Tempo, o Tempo de Estabilização e o Tempo de Subida para o sistema de primeira ordem mostrado abaixo quando o mesmo é submetido a uma entrada degrau unitário:

8 EXEMPLO

9

10 Resposta no Domínio do Tempo:
Sistemas de segunda ordem: Resposta Superamortecida; Resposta Subamortecida; Resposta sem Amortecimento; Resposta Criticamente Amortecida; Frequência Natural; Relação de Amortecimento;

11 Sistemas de Segunda Ordem

12 Encontre a resposta ao degrau para os quatro sistemas de segunda ordem mostrados abaixo:

13

14 Generalizando um sistema de Segunda Ordem
Frequência Natural do Sistema Relação de Amortecimento do Sistema

15 Definição da Relação de Amortecimento -
Relação entre a “frequência exponencial de decaimento” e a “frequência natural não amortecida do sistema”: Para um sistema sem amortecimento os pólos estão no eixo imaginário e portanto na expressão acima

16 Definição da Relação de Amortecimento -
Portanto os pólos valem: Logo: Para o sistema amortecido as raízes valem:

17 Definição da Relação de Amortecimento -
Temos então:

18 Respostas de segunda ordem em função da relação de amortecimento

19 Parâmetros de Desempenho de Sistemas de Segunda Ordem
Tempo de Subida: tempo para a resposta variar de 10% até 90% do seu valor final; Tempo de Estabilização: tempo necessário para que a resposta ao degrau alcance 98% do valor de estado estacionário;

20 Parâmetros de Desempenho de Sistemas de Segunda Ordem
Tempo de Pico: tempo necessário para que a resposta alcance seu valor máximo; Ultrapassagem Percentual (Sobrenível Percentual): O quanto o valor da resposta (em Percentual) ultrapassa no tempo de pico o valor de estado estacionário da resposta.

21 Especificações da resposta de segunda ordem subamortecida
máx 1,02 0,98 0,9 cfinal 0,1 cfinal 0,1

22 Tempo de Pico

23 Tempo de Pico

24 Percentual de Ultrapassagem (Sobrenível Percentual)

25 Tempo de Estabilização

26

27 Ultrapassagem percentual em função da relação de amortecimento
Ultrapassagem percentual,%UP 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Relação de amortecimento, 

28 Tempo de subida normalizado versus relação de amortecimento para uma resposta de segunda ordem subamortecida Coeficiente de amortecimento Tempo de subida normalizado 3,0 0,1 1,104 0,2 1,203 2,8 0,3 1,321 2,6 0,4 1,463 0,5 1,638 2,4 0,6 1,854 2,2 0,7 2,126 Tempo de subida × Freqüência natural 2,467 2,0 0,8 0,9 2,883 1,8 1,6 1,4 1,2 1,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Relação de amortecimento

29 Respostas de segunda ordem subamortecidas com os valores da relação de amortecimento
1,8 0,1 1,6 0,2 1,4 0,4 1,2 0,5 0,6 1,0 0,8 0,8 0,6 0,4 0,2

30 Exemplo Encontre para uma entrada degrau para o sistema abaixo

31

32 RELAÇÃO ENTRE OS PARÂMETROS DE RESPOSTA AO DEGRAU E A POSIÇÃO DOS PÓLOS DE G(S) NO PLANO “s”

33

34 Linhas de valores constantes para tempo de pico, Tp, tempo de assentamento, Ts, e ultrapassagem percentual, %UP - Nota: %UP1 < %UP2 %UP1 %UP2 plano s

35 Respostas ao degrau de sistemas de segunda ordem subamortecidos à medida que os pólos se movem: a. com parte real constante; b. com parte imaginária constante; c. com relação de amortecimento constante. A mesma envoltória plano s Movimentação do pólo A mesma freqüência plano s Movimentação do pólo A mesma ultrapassagem plano s Movimentação do pólo

36 Exemplo: Encontre plano s

37

38 Resposta de Sistemas com três pólos

39 Influência de Terceiro Pólo em um sistema de Segunda Ordem
Quanto menor a Constante de Tempo do pólo menor sua influência na resposta Quanto mais a esquerda do plano “s” estiver o pólo menor será o resíduo associado a este pólo (ver exemplo a seguir)

40 Influência do Resíduo do Terceiro Pólo

41 Validade de aproximação de Segunda Ordem
Como os pólos adicionais devem estar o mais à esquerda do eixo imaginário, consideraremos que um sistema com três (ou mais) pólos pode ser aproximado por um Sistema de Segunda Ordem se os pólos adicionais estiverem a esquerda dos pólos dominantes, pelo menos cinco vezes mais distantes.

42 EXEMPLO i i

43 Respostas ao degrau dos sistemas T1(s), T2(s) e T3(s)
1,4 1,2 1,0 0,8 Resposta normalizada 0,6 0,4 0,2 0,5 1,0 1,5 2,0 2,5 3,0 Tempo (s)


Carregar ppt "a. Sistema de primeira ordem; b. gráfico do pólo"

Apresentações semelhantes


Anúncios Google