A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Universidade Federal de Itajubá

Apresentações semelhantes


Apresentação em tema: "Universidade Federal de Itajubá"— Transcrição da apresentação:

1 Universidade Federal de Itajubá
Química Nuclear Felipe Annoni Kawai Thaís Silva Silvério Prof. Élcio Barrak

2 Radioatividade Núcleons → prótons e nêutrons
Nº atômico (Z) = Nº de prótons Nº de massa (A) = Nº total de núcleons Isótopos → átomos com mesmo Z que diferem em relação à A U U U

3 As propriedades nucleares dependem de Z e N (nº de nêutrons)
Núcleos radioativos → radionuclídeos Átomos radioativos → radioisótopos Equações nucleares → representação da reação de decaimento radioativo, Z e A devem ser balanceados em todas as equações nucleares U → Th + He

4 Tipos de decaimento radioativo
Radiação alfa (α) → feixe de núcleos de hélio-4, que são emitidos espontaneamente Ra → Rn + α Radiação Beta (β) → feixe de elétrons de alta velocidade emitidos por um núcleo estável. I → Xe e

5 Equivalente à conversão do nêutron em um próton, em conseqüência, ocorre o aumento do Z em 1
n → p + e Radiação Gama () → fótons de alta energia, não altera Z e A de um núcleo. Representação: o  Captura de elétrons → captura pelo núcleo de um e- da nuvem eletrônica ao redor do núcleo. Rb e → Kr

6 Pósitron → possui a massa de um e-, mas carga contrária.
O isótopo de carbono-11 decai por emissão de pósitron. C → B e Captura de elétrons, como a emissão de pósitron tem efeito de converter um próton em um nêutron: p → e → n

7 Padrões de estabilidade nuclear
Razão nêutron-próton → fator dominante da estabilidade nuclear. Comparando-se a razão nêutron-próton de um nuclídeo com o cinturão de estabilidade, pode-se determinar o modo de decaimento radioativo. Podemos visualizar três situações gerais: Núcleos acima do cinturão de estabilidade (altas razões nêutron-próton): núcleos ricos em nêutrons e tendem a emitir partículas β.

8 Núcleos abaixo do cinturão de estabilidade (baixas razões nêutron-próton): núcleos ricos em prótons que tendem a emitir pósitron ou capturar elétrons. Núcleos com números atômicos ≥ 84: núcleos mais pesados que tendem a emitir partícula α.

9

10 Série de radioatividade ou desintegração nuclear → série de reações nucleares que começa com um núcleo instável e termina com um núcleo estável.

11 4 40 98 Fatores que ajudam a determinar a estabilidade nuclear
Números mágicos: números de núcleons mais estáveis 2, 8, 20, 28, 50 ou 82 → prótons 2, 8, 20, 28, 50, 82 ou 126 → nêutrons Núcleos com números pares tanto de prótons quanto de nêutrons geralmente são mais estáveis que os com números ímpares He e Ca (estáveis) Tc (instável, radioativo)

12 Transmutações nucleares
Transmutações nucleares → conversões induzidas de um núcleo em outro, podendo ser realizadas pelo bombardeamento do núcleo com partículas carregadas ou nêutrons N He → O H Uso de partículas carregadas → partículas carregadas devem se movimentar mais rapidamente para superar a repulsão eletrostática entre elas e o núcleo-alvo. Os aceleradores de partículas permitem que as partículas superem essas repulsões eletrostáticas

13 Uso de nêutrons → muitos isótopos sintéticos são preparados usando nêutrons como projéteis. Os nêutrons necessários são produzidos pelas reações que ocorrem nos reatores nucleares. Elementos transurânicos → transmutações artificiais têm sido usadas para produzir os elementos com Z acima de 92. São produzidos pelo bombardeamento de urânio-238 com nêutrons.

14 Velocidades de decaimento radioativo
Meia-vida → tempo necessário para que metade de certa quantidade de uma substância radioativa decaia Cada isótopo tem sua própria meia-vida Como a meia-vida de qualquer nuclídeo é constante, a meia-vida pode servir como um relógio nuclear para determinar idades de diferentes objetos. A meia-vida do carbono-14 é de anos C → N e

15 Decaimento radioativo → processo cinético de 1ª ordem
Velocidade de decaimento (atividade) → diretamente proporcional ao nº de núcleos radioativos N na amostra: Velocidade = kN ln( Nt / N0 ) = - kt k = 0,693 / t1/2 Bequerel (Bq) → unidade de atividade radioativa. 1 Bq = desintegração / s

16 Detecção de radioatividade
Bequerel Lâminas e Filmes Fotográficos → extensão do obscurecimento Contador Geiger → ionização da matéria e condução de corrente elétrica Contador de Cintilações → detecção e medição pelos sinais de luz produzidos por uma substância fosforescente Métodos quantitativos

17 Rastreadores radioativos
Radioisótopos usados para seguir um elemento por suas reações químicas Aplicações médicas → ferramentas de diagnóstico Habilidade do composto radioativo de localizar-se e concentra-se no órgão ou tecido sob investigação Iodo-131 → glândulas tireóides

18 Tomografia por emissão de pósitron → construção de imagem computadorizada do órgão que está emitindo a radiação Radionuclídeos mais utilizados: 11C, 18F, 15O, 13N

19 Variação de energia nas reações nucleares
Equação de Einstein → E = m.c2 E = energia (J), m = massa (kg), c = velocidade da luz = 2,9979 x 108 m/s ΔE = Δm.c2 Δm = m total dos produtos – m reagentes

20 Perda de massa → perda de energia (ΔE<0) → exotérmica
Reações nucleares espontâneas Ganho de massa → ganho de energia (ΔE>0) → endotérmica ΔE e Δm nas reações nucleares são muito maiores que nas reações químicas

21 Energia de coesão dos núcleos
Energia necessária para separar um núcleo em seus núcleons E coesão, estabilidade do núcleo Comparação das estabilidades de diferentes combinações de núcleons

22 m núcleos < m núcleons individuais
Perda de massa (m núcleo – m núcleons constituintes) Adição de energia para quebrar o núcleo

23 Fissão Nuclear Núcleos pesados → Núcleos médios + energia
Reação em cadeia

24 Massa crítica → massa mínima de material físsil
Massa subcrítica Massa supercrítica Bomba Atômica

25 Reatores Nucleares

26 Fusão Nuclear Sol Núcleos leves → Núcleos pesados + energia
Maior disponibilidade de isótopos mais leves Altas energias necessárias para superar repulsão entre núcleos Altas energias → Altas temperaturas Reações termonucleares

27 Bomba termonuclear ou de hidrogênio
Uso de bomba atômica para alcançar altas temperaturas Inadequada para geração controlada de energia Inexistência de material estrutural que resista às temperaturas necessárias Pesquisas Tokamak → campos magnéticos fortes Laseres poderosos

28 Efeitos biológicos da radiação
Constante exposição à radiação natural e artificial (Ex: luz visível do sol, microondas, raios X) Diferentes energias para diferentes espécies de radiação Tipos de radiação: Não-ionizantes → excitação de elétrons Geralmente possui energia mais baixa

29 Ionizante → remoção de um elétron do átomo ou molécula
Geralmente muito mais prejudicial aos sistemas biológicos Formação de radicais livres nos tecidos humanos H2O+ + H2O → H3O+ + ·OH Capazes de romper as operações normais das células Dano depende da atividade e da energia da radiação, do tempo de exposição e da localização da fonte

30 Raios  e X → prejudiciais fora do corpo
Raios α → bloqueados pela pele, mas perigosos dentro do corpo Raios β → penetram 1cm na pele Principal efeito da exposição prolongada a baixas doses de radiação → câncer

31 Hipóteses sobre os efeitos da radiação
Efeitos proporcionais à exposição, mesmo a baixas doses. Qualquer quantidade de radiação provoca algum risco finito de lesão Limite abaixo do qual não existem riscos de radiação

32 Doses de Radiação Medição de dose absorvida de radiação
Gray (Gy) → unidade SI 1 J de energia / kg de tecido Rad → uso frequente em medicina 1 x 10-2 J de energia / kg de tecido 1 Gy = 100 rads Efetividade Biológica Relativa (EBR) Medição do dano biológico relativo causado pela radiação Varia com a taxa da dose, com a dose total e com o tipo de tecido afetado

33 Dose Efetiva Sievert (Sv) = (Gy) x (EBR) Unidade SI Nº de rems = (Nº de rads) x (EBR) Equivale a roentgen/ser vivo Geralmente usado na medicina 1 Sv = 100 rem Exposição média por uma pessoa em um ano a radiações ionizantes = 360 mrem

34 Radônio-222 Gás nobre radioativo
Formado pelo decaimento do urânio de rochas e solos Interação entre propriedades químicas e nucleares Extremamente não-reativo Escapa do solo sem reagir quimicamente Facilmente inalado e exalado

35 Rn → Po + He Partícula α tem alta EBR Po → Pb + He Polônio-218 pode ficar retido nos pulmões Responsável por 10% das mortes por câncer nos pulmões Níveis de radônio-222 ≤ 4 pCi/Lar

36 Areia Monazítica Encontrada no litoral brasileiro
Composta de vários minerais pesados Monazita → fosfatos, tório e urânio (fabricação de vidros especiais como tubos de televisores, catalisadores para petróleo e fibras ópticas) Zircão → silicato de zircônio, háfnio (fabricação de refratários, moldes de fundição e peças para reatores nucleares) Ilmenita → óxido de ferro e titânio (ampla aplicação na indústria aeroespacial, como ligas em motores e turbinas)

37 A partir do tório obtém-se o urânio físsil
Vendia-se aos EUA Era beneficiado no Complexo Industrial de Poços de Caldas, que hoje está desativado

38 Terapia por radiação Radioterapia → tratamento por radiação de alta energia Tumores malignos → massas de tecido anormal Podem ser causados pela radiação de alta energia Podem ser destruídos pela exposição à mesma Células que se reproduzem rapidamente são mais susceptíveis aos danos da radiação

39 Radionuclídeos usados
Meias-vidas pequenas → grande quantidade de reação em curto período de tempo Fonte dentro ou fora do corpo Mais comum → radiação  Sementes radioativas → revestidas de platina Implantadas cirurgicamente Ingestão Aceleradores de partículas Quase impossível evitar danos às células saudáveis Efeitos colaterais → fadiga, náusea, perda de cabelos, enfraquecimento do sistema imunológico e até morte

40 Referências bibliográficas
T. L. Brown, H. E. LeMay Jr., B. E. Bursten e J. R. Burdge. Química: A Ciência Central, 9ª. ed.. São Paulo: Pearson, 2005.


Carregar ppt "Universidade Federal de Itajubá"

Apresentações semelhantes


Anúncios Google