A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Iniciação ao MatLab Eugênio Silva E Adriano Cruz.

Apresentações semelhantes


Apresentação em tema: "Iniciação ao MatLab Eugênio Silva E Adriano Cruz."— Transcrição da apresentação:

1 Iniciação ao MatLab Eugênio Silva E Adriano Cruz

2 Introdução

3 MatLab – Matrix Laboratory (Universidades de Stanford e Novo México ) originalmente escrito para trabalhar com matrizes e vetores evoluiu ao longo do anos até se tornar uma ferramenta de ampla abrangência.

4 Introdução o MatLab é uma poderosa ferramenta matemática e uma linguagem de programação de alto-desempenho para a computação científica integra cálculos matemáticos, visualização e programação em um ambiente interativo é de fácil utilização

5 Exemplo – transpor uma matriz Pascal var a, b : array [1..3, 1..3] of integer; i, j : integer; begin... for i = 1 to 3 for j = 1 to 3 b(j,i) := a(i,j); end; end. MatLab >> a = [1 2 3; 4 5 6; 7 8 9] a = >> b = a b =

6 Introdução o elemento de dados básico é uma matriz matrizes e vetores são manipulados com mais facilidade e rapidez que em programas escritos em linguagens não-interativas como Pascal, C ou Fortran

7 Introdução Linha de comandos – é possível usar o matlab através de comandos emitidos a partir de linha de comandos scripts – arquivos que contém comandos matlab

8 Introdução toolboxes - bibliotecas de funções que permitem a resolução de classes particulares de problemas simulink - acessório que acrescenta uma interface de diagramas de blocos e recursos de simulação real aos demais recursos numéricos, gráficos e de linguagem

9 Aplicações matemática e computação desenvolvimento de algoritmos modelagem, simulação e prototipação análise de dados, exploração e visualização gráficos científicos em duas e três dimensões

10 Help On line Linha de comandos - – help – help elfun – help abs demos - – demo

11 Comandos

12 Operações Elementares >> – 2 ans = 8 >> 4 * * * 9 ans = 56 >> 25 / \ 25 ans = 10 >> 3 ^ 2 * 2 ^ ans = 38

13 Prioridades Parênteses Potência – 3 * 2 ^ 3 = 24 * e / – Resolvendo da esquerda para direita – 8 / 4 * 3 = 6 + e - – Resolvendo da esquerda para direita

14 Números Inteiros: 32, Reais: , -23.0, 1.0e-3 Complexos: 3.2 – 23.5i Inf: Infinito (resultado da divisão por 0) NaN: Not a number 0/0 Contas são feitas com 15 dígitos aproximadamente Comando format controla impressão dos resultados.

15 Definição de Variáveis >> a = 10 a = 10 >> b = 20; O ; evita que o resultado apareça na tela. >> c = 1 + 2i ou c = 1 + 2j c = – i

16 Nomes de Variáveis Combinações de letras e números, começando com letra – n1, ab, temp Nomes especiais – eps = e-16 (o menor número tal que 1 + eps é indistinguível de 1) – pi – i, k

17 Variáveis Pré-definidas ans : váriavel padrão usada para resultados de expressões do tipo – >> pi i ou j : igual a raiz quadrada de -1 realmax : maior número real utilizável – e+308 realmin : menor número real utilizável – e-308

18 Variáveis Pré-definidas nargin : número de argumentos de entrada nargout : número de argumentos de saída

19 Funções Elementares abs(x) valor absoluto de x sin(x) seno de x asin(x) arc seno x cos(x) co-seno x acos(x) arc co-sen x tan(x) tangente x exp(x) e elevado a x

20 Funções Elementares log(x) log inverso de exp(x) log10(x) log base 10 de x gcd(x,y) mdc de x e y lcm(x,y) mmc entre x e y max(x) máximo de x min(x) mínimo de x inv(x) matriz inversa de x...

21 Espaço de Trabalho >> who lista variáveis na memória >> whoslista variáveis detalhadamente >> clearapaga variáveis da memória >> savesalva variáveis em arq.mat >> loadcarrega variáveis de um.mat >> formatformato de apresentação dos resultados

22 Comandos do SO >> dir ou lsarquivos do diretório >> cd ou pwddiretório corrente >> cd..diretório acima do corrente >> cd \diretório raiz >> delete apaga arquivo >> edit abre arquivo para edição >> type mostra o conteúdo do arquivo >> quit ou exitsai do ambiente

23 Vetores

24 Vetores em linha >> x = [ ]; >> lenght(x) ans = 3 >> y = [ ]; >> x + y ans = 4710 >> z = 3 * y ans = 91215

25 Vetores >> x = [ ]; >> v1 = [ ]; >> x + v1 ??? Error using ==> plus Matrix dimensions must agree.

26 Gerando vetores >> x = [ ].* pi ou >> x = (0:0.1:1).* pi ou >> x = linspace(0,pi,11) >> y = sin(x)

27 Gerando vetores linspace(x1,x2) gera um vetor linha com 100 pontos igualmente espaçados. linspace(x1,x2,n) gera vetor com n pontos entre x1 e x2 >>linspace(0,pi,11)

28 Gerando vetores a : b : c gera vetor começando em a, incrementando por b, até chegar em c. Não gera além de c. >> 0:0.1:1 ans = a : b gera vetor começando em a até chegar em b incrementando por 1

29 Manipulando vetores x = (0:0.1:1)*pi x = x(6) = x(1:5) = x(7:end) = x(3:-1:1) = x(2:2:7) =

30 Manipulando vetores, matrizes x = x([ ]) = z = x[(2:5) 4 5 7] = w = [ x y ] %vetor linha k = [ x; y ] % matriz com duas linhas

31 Manipulando vetores, matrizes A = [1 2 3; 4 5 6; 7 8 9]; A(3,3) = 9 A(2, 2:3) = 5 6 A(3,:) = % : todas as colunas

32 Manipulando vetores, matrizes B = A(3:-1:1, : ) B = [7 8 9; 4 5 6; 1 2 3] C = [A B( :, [1 3])] – C = [ ; ; ] B(:,2) = [ ] – B = [7 9; 4 6; 1 3] B = A(:,[ ]) – B = [ ; ; 8 8 8]

33 Operações Especiais >>eye(linhas,colunas) Cria matriz identidade >> det(m) Determinante de m >> zeros(n1,n2,n3,...) Matriz de zeros >> inv(m) Inversa de m >> ones(n1,n2,...) Matriz de uns >> m Transposta de m >> rand (n1,n2,...) Matriz de rand entre 0 e 1.0

34 Matrizes matriz(10) ou matriz(2,3)

35 Busca de Sub-Matrizes >> x = -3:3 x = >> k = find(abs(x) > 1) k = >> y = x(k) >> A= [1 2 3; 4 5 6; 7 8 9] A = >> [ i, j ] = find(A > 5) i = 3 j =

36 Dimensões de Vetores e Matrizes whoslista as variáveis e suas dimensões s = size(A)retorna o número de linhas e colunas de A [x,y] = size(A)x contém o núm de linhas e y o de colunas x = size(A,1)retorna o número de linhas de A y = size(A,2)retorna o número de colunas de A n = length(A)retorna max(size(A))

37 Operações com Vetores e Matrizes a = [a 1 a 2... a n ], b = [b 1 b 2... b n ], c = adição a escalara + c = [a 1 + c... a n + c] multiplicação por escalara * c = [a 1 * c... a n * c] soma de vetoresa + b = [a 1 + b 1... a n + b n ] multiplicação de vetoresa.* b = [a 1 *b 1... a n *b n ]

38 Operações com Vetores e Matrizes a = [a 1 a 2... a n ], b = [b 1 b 2... b n ], c = Divisão vetores (a/b)a./ b = [a 1 /b 1... a n /b n ] Divisão vetores (b/a)a.\ b = [a 1 \b 1... a n \b n ] Potenciação vetorialc.^a = [c^a 1... c^a n ]

39 Alguns exemplos x = [ ], y = [ 1 1/2 1/3 1/4]; x.* y % dot product 1 1 x * y' % scalar product 4 sqrt( x * x') %Comprimento vetor

40 Mais exemplos: resolução de sistemas de equações 2x 1 -x 2 = 1 X 1 -2x 2 + x 3 = 0 -x 2 + 2x 3 = 1 Ax = b; x = A -1 b; x = A \ b

41 Mais exemplos: resolução de sistemas de equações A = [ ; ; ]; b = [1; 0; 1] Em notação matricial Ax = b x = A -1 b; X = inv(A) * b; x = A \ b;

42 Gráficos

43 Gráficos Bidimensionais >> x = linspace(0, 2 * pi, 30); >> y = sin(x); >> z = cos(x); >> plot(x,y,x,z)

44 Títulos, Rótulos e Grids >> x = linspace(0, 2 * pi, 30); >> y = sin(x); >> plot(x,y,x,z); >> title('Grafico de y = sen(x)'); >> xlabel('Eixo x'); >> ylabel('Seno(x)');

45 Legendas >> x = linspace(0, 2 * pi, 30); >> y = sin(x); >> z = cos(x); >> plot(x,y,x,z); >> legend('curva sen', 'curva cos');

46 Linhas: Estilos e Cores >> x = linspace(0, 2 * pi, 30); >> y = sin(x); >> z = cos(x); >> subplot(2,1,1) >> plot(x,y,go) >> subplot(2,1,2) >> plot(x,z,r*)

47 Hold Comando plot limpa a janela do gráfico antes de desenhar o novo gráfico Isto não é conveniente se desejarmos adicionar outros gráficos no futuro Usar hold para evitar limpeza da janela plot(x,y,'w-'), hold on plot(x,y,'gx'), hold off hold off não limpa a janela (usar clf)

48 Subplots A janela do gráfico é dividida em uma matriz m x n de pequenas janelas. As janelas são contadas entre 1 e m x n Cada subfigura é tratada como uma figura podendo ter mais de uma curva, estilos, legendas, cores etc

49 Subplots x = linspace(0,2*pi,30); y1 = sin(x); y2 = sin(2*x); y3 = sin(3*x); y4 = sin(4*x); subplot(221), plot(x,y1), legend('y = sen(x)'); subplot(222), plot(x,y2), legend('y = sen(2*x)'); subplot(223), plot(x,y2), legend('y = sen(3*x)'); subplot(224), plot(x,y4), legend('y = sen(4*x)');

50 Subplots

51 Gráficos Bidimensionais >> x = -2.9 : 0.2 : 2.9; >> y = randn(5000,1); >> hist(y,x)

52 Textos Formatados Possível aumentar ou diminuir fontes Alguns comandos latex podem ser usados É possível obter os valores de qualquer propriedade através do handle da figura handle = plot(x,y); get (handle, 'markersize');

53 Controlando os eixos Uma vez que um gráfico foi criado é possível mudar a excursão dos valores x e y mostrados na figura. clf, N=100; h=1/N; x = 0:h:1; y = sin(3*pi*x), plot(x,y); axis([ ]), grid;

54 Controlando os eixos

55 Gráficos Tridimensionais >> t = 0 : pi / 50 : 10 * pi; >> plot3(sin(t),cos(t),t); >> title(hélice) >> xlabel(sen(t)) >> ylabel(cos(t)) >> zlabel(t) >> grid

56 Gráficos Tridimensionais %z = f(x,y) x = -0.5*pi:0.1:0.5*pi; y = x; %minusculas [X Y] = meshgrid(x,y); Z = sin(2*X)+sin(3*Y); % maiusculas mesh(X,Y,Z); title('Ex de graf 3D');

57 Gráficos Tridimensionais

58 O mesmo com surf

59 O mesmo com surfl

60 Gráficos Tridimensionais >> surf(peaks)

61 Scripts

62 Arquivos M (Scripts) Armazenam uma sequência de comandos em um arquivo texto que é executado a partir do prompt Úteis quando o número de comandos a serem executados é grande, ou caso seja necessário alterar os valores das variáveis e re-executar alguns comandos Devem ter a extensão.m

63 Scripts em Matlab Scripts não aceitam e não retornam argumentos. Scripts podem alterar as variáveis do espaço de trabalho (workspace) atual. Scripts podem conter comandos que interagem com o usuário e/ou arquivos. Use scripts para: – Automatizar a execução de uma seqüência de comandos frequentemente utilizados – Documentar os passos de um processo

64 Scripts em Matlab %Exemplo de script % clear all; x = 0:0.01:2*pi; eixos = [0 2*pi -2 +2]; y1 = sin(x); y2 = cos(x); y3 = tan(x); y4 = zeros(size(x)); plot (x,y1,x,y2,x,y3,x,y4,'k'); axis (eixos); legend('Seno', 'Coseno','Tangente'); title('Graficos de seno, coseno e tangente.'); xlabel('Angulos'); ylabel('Seno, coseno e tangente');

65 Scripts em Matlab

66 Scripts Para executar um script armazenado em um arquivo digite o nome do arquivo sem o.m O que aparece na tela são os resultados da execução dos comandos. echo on faz com que os comandos apareçam antes da execução. echo off faz com que os comandos deixem de aparecer.

67 Alguns Comandos e Funções

68 Estrutura Condicional – if >> if expressão_1 comandos_1; elseif expressão_2 comandos_2; else comandos_3; end

69 Operadores Relacionais e Lógicos < menor que <= menor ou igual > maior que >= maior ou igual = igual ~= diferente & e | ou ~ não

70 Funções Relacionais e Lógicas xor(x,y)ou exclusivo ischar(x)1 se x é um vetor de caracteres isequal(x,y)1 se x e y são iguais isempty(x)1 se x é vazio ismember(x,y ) 1 se os elementos de x pertencem a y isstruct(x)1 se x é uma estrutura

71 Estrutura Condicional – switch - case >> switch expressão case teste_expressão_1 comandos_1 case teste_expressão_2 comandos_2 otherwise comandos_3 end

72 Laços de Repetição – for / while >> for x = vetor comandos; end >> while expressão comandos; end

73 Laços de Repetição clf; x = -2:0.1:2; hold on; for n = 1:8 plot(x,n*x.*x ); end hold off;

74 Laços de Repetição

75 Otimização de Código o laço de repetição for i = 0:999 x(i+1) = sin(2*pi*i/100); end pode ser substituído por x = sin(2*pi*[0:999]/100);

76 Funções dos Arquivos M disp(x)Mostra resultado sem identificar variável echocontrola a exibição dos comandos inputsolicita ao usuário a entrada keyboardtransfere o controle para o teclado pause(n)suspende execução por n segundos pausesuspende até que tecla seja pressionada

77 Análise de Dados cov (x) matriz de covariância min(x)componente mínima max(x)componente máxima mean(x)média rand(x)núm. aleatórios uniformemente distrib var(x)variância std(x)desvio padrão sum(x)soma dos elementos da coluna

78 Funções criadas pelos usuários

79 Funções em Matlab Uma função em Matlab é um arquivo de texto. Arquivos de funções devem ter um nome igual ao nome da função. Um conjunto de funções e scripts pode ser agrupado em um único diretório. O conjunto é chamado de toolbox. Toolboxes extendem as capacidades do Matlab

80 Funções criadas pelo usuário a partir da segunda vez a execução de uma função é mais rápida que da primeira as linhas de comentário que antecedem a primeira linha sem comentário aparecem quando se pede ajuda

81 Arquivos M de funções variáveis criadas dentro de uma função permanecem apenas no espaço de trabalho da função funções podem compartilhar variáveis com outras funções desde que sejam declaradas como globais arquivos M de funções podem conter mais de uma função, a função primária e as sub-funções

82 Funções em Matlab function [d] = distPontos(p1,p2) % % Calcula a distancia entre dois pontos % p1 = [x1 y1] e p2 = [x2 y2] % em um espaco bi-dimensional % Entradas: % p1, p2: dois pontos % Saída: % d: distancia entre p1 e p2 % Uso: % d = distPontos(p1, p2) % Autor: % Adriano Cruz % Data: % 2010/03/02 d = sqrt((p1(1) - p2(2))^2 + (p1(2) - p2(2))^2);

83 Funções em Matlab p1 = [ 1 1 ]; p2 = [ 0 0 ]; d = distPontos(p1, p2)

84 Arquivos

85 Arquivos Formatados Parecido com C Lembrar que matlab anda no sentido da coluna. Ao ler dados para uma matriz irá preencher no sentido da coluna Ao escrever dados de uma matriz irá ler no sentido da coluna

86 Arquivos Formatados (1,1) = (1)(1,2) = (5)(1,3) = (9)(1,4)=(13) (2,1) = (2)(2,2) = (6)(2,3)=(10)(2,4)=(14) (3,1) = (3)(3,2) = (7)(3,3)=(11)(3,4)=(15) (4,1) = (4)(4,2) = (8)(4,3)=(12)(4,4)=(16

87 Arquivos Formatados Considere o arquivo

88 Arquivos Formatados Será armazenado em um vetor como

89 Arquivos Formatados Novamente Considere o arquivo

90 Arquivos Formatados Leitura fid=fopen('dadosin.txt', 'r'); a = fscanf(fid, '%d'); fclose(fid); a=reshape(a,2,size(a,1)/2)';

91 Arquivos Formatados Escrita x = -3:1:3; y = x.^2; fid = fopen('dados.txt', 'w'); temp = [ x; y ] fprintf(fid,'%f %f\n', temp); fclose(fid);

92 Arquivos Formatados Escrita

93 Extras

94 Temporização tic: começa a contar o tempo. toc: termina de contar o tempo.

95 Temporização tic: começa a contar o tempo. toc: termina de contar o tempo.

96 Matrizes Celulares são matrizes cujos elementos são células qualquer célula da matriz pode conter qualquer tipo de dado (matrizes numéricas, texto, matrizes celulares, etc.)

97 Matrizes Celulares >> A(1,1) = { [1 2 3; 4 5 6; 7 8 9] }; >> A(1,2) = { 2 + 3i }; >> A(2,1) = { um texto } >> A(2,2) = {12 : -2 : 0}; >>A = [3x3 double] [ i] 'um texto' [1x7 double]

98 Matrizes Celulares >> A{1,1} = [1 2 3; 4 5 6; 7 8 9]; >> A{1,2} = 2 + 3i; >> A{2,1} = um texto >> A{2,2} = 12 : -2 : 0; >>A = [3x3 double] [ i] 'um texto' [1x7 double]

99 Matrizes Celulares >> cellplot(A);

100 Estruturas são objetos que contêm recipientes de dados com nomes diferentes esses recipientes são chamados de campos os campos podem conter qualquer tipo de dado ao se referir aos campos de uma estrutura usa-se seus nomes em vez de usar índices estruturas podem conter outras estruturas

101 Estruturas >> cliente.nome = João da Silva; >> cliente.custo = 86.50; >> cliente.teste.A1C = [ ]; >> cliente.teste.CHC = [ ];

102 Ajuda On-Line help helpwin helpdesk lookfor demo arquivos de ajuda

103 Para Saber Mais Hanselman, Duane; Littlefield, Bruce; Matlab 5 Guia do Usuário (versão do estudante), Makron Books, Matsumoto, Élia Yathie; Matlab 6 - Fundamentos de Programação, Editora Érica, 2001.

104 Demonstrações matrices/graphs and matrices matrices/matrix manipulation visualization/vibration movie visualization/visualizing sound gallery/knot gallery/slosh gallery/logo games/sliding puzzle

105 Temporização tic: começa a contar o tempo. toc: termina de contar o tempo.


Carregar ppt "Iniciação ao MatLab Eugênio Silva E Adriano Cruz."

Apresentações semelhantes


Anúncios Google