A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1:05 Métodos de Calibração de Modelos hidrológicos Carlos Ruberto Fragoso Júnior.

Apresentações semelhantes


Apresentação em tema: "1:05 Métodos de Calibração de Modelos hidrológicos Carlos Ruberto Fragoso Júnior."— Transcrição da apresentação:

1 1:05 Métodos de Calibração de Modelos hidrológicos Carlos Ruberto Fragoso Júnior

2 3:50 Sumário Conceito básicos O que é calibração? Problemas comuns na calibração de modelos hidrológicos Ciclo da calibração Métodos de calibração Função objetivo Técnicas numéricas Busca aleatória Técnicas iterativas; Busca direta; Técnicas de otimização global; Algoritmos genéticos Critérios de parada

3 3:50 O que é calibração Procura de valores dos parâmetros de um modelo matemático que resultem em uma boa concordância entre dados observados e calculados; O erro é minimizado!!

4 3:50 Calibração - Otimização Encontrar o mínimo ou o máximo de uma função

5 3:50 Problemas comuns em modelos hidrológicos Encontrar um conjunto ótimo de parâmetros que ajusta um evento de cheia ou uma série de vazões; Encontrar o coeficiente do reservatório linear simples que ajusta adequadamente uma recessão de vazão.

6 3:50 Problema: Encontrar o coeficiente do reservatório linear simples que ajusta adequadamente uma recessão de vazão. Q = V / k Q(t+dt) = Q(t). exp(-dt/k)

7 3:50

8

9 Q(t+dt) = Q(t). exp(-dt/k) Primeiro teste: k = 20

10 3:50 Modelos hidrológicos geralmente tem muitos parâmetros Não lineares Técnicas de otimização automáticas Usar Funções Objetivo Problemas na calibração de modelos hidrológicos

11 3:50 Ciclo da calibração Rodar o modelo Verificar o erro Ajustar os parâmetros Critérios de parada Critérios para um bom ajuste (Função objetivo) Critérios para mudança dos parâmetros

12 3:50 Métodos de calibração Métodos de calibração Tentativa e erro (Manual) Técnicas numéricas Aleatório Ajusta os parâmetros manualmente baseado nos resultados Assume faixa de probabilidade para cada parâmetro Usa algoritmos numéricos para encontrar um conjunto de parâmetros ótimo

13 3:50 Funções Objetivo (FO) Medida do erro – objetivo é minimizar a FO Diferentes funções objetivo Somatório dos erros: compensação de erros Somatório do módulo dos erros Somatório dos erros ao quadrado Somatório de erros relativos Somatório dos desvios dos inversos da vazão Erro de volume (bias) Coeficiente de eficiência de Nash-Sutcliffe

14 3:50 Funções objetivo Raiz do Erro Médio Quadrado (RSME)

15 3:50 Funções objetivo Raiz do Erro Médio Quadrado Normalizado (NRSME)

16 3:50 Funções objetivo Coeficiente de correlação de Pearson

17 3:50 Funções objetivo Coeficiente de eficiência de Nash-Sutcliffe

18 3:50 Funções Objetivo Função quadrática Função módulo Função para mínimos Função relativa

19 3:50 Exemplo

20 3:50 Técnicas de otimização Cálculo analítico Técnicas numéricas Busca aleatória Busca direta Algoritmos genéticos

21 3:50 Cálculo analítico Encontrar pontos da função em que a derivada é zero. vantagens (pode ser rápido, é mais elegante) desvantagens (funções de picos múltiplos, funções descontínuas, ausência da forma analítica da função - por exemplo no problema de calibração de um modelo chuva- vazão)

22 3:50 Haverá sempre um ponto de máximo ou mínimo, seja no interior da região delimitada pelas restrições ou nos limites, desde que a função objetivo seja contínua. A condição necessária para que exista um ponto de máximo ou mínimo é a seguinte: pontos estacionários A condição suficiente para que um ponto estacionário seja um mínimo é a seguinte onde Ri são os menores principais da matriz Hessiana H. Cálculo analítico - Conceitos

23 3:50

24 Exemplo Determine o mínimo da função H = x 1 = 8 x 2 = 2 y = -56 Matriz positiva definida

25 3:50 Técnicas numéricas - Busca Aleatória Vantagens: funções descontínuas; picos múltiplos Desvantagens: demorado; não existe garantia de atingir o ponto ótimo global Ótimo

26 3:50 Características das Técnicas Numéricas Definição do ponto de partida : o critério para inicializar o processo de tentativa em geral depende mais do problema em questão do que do método. Direção de pesquisa : a direção de pesquisa identifica o vetor no qual serão realizadas as alterações das variáveis. Espaçamento de cada tentativa : identifica a variação que ocorrerá na direção de pesquisa a cada tentativa. Critérios de parada : envolve a definição dos critérios para aceitar uma determinada solução como o ótimo de uma função.

27 3:50 Técnicas numéricas - Busca direta Estratégia de caminhar morro acima

28 3:50 Máximo global Máximo local Função objetivo: F(x1,x2) x1 x2

29 3:50 Início: ponto coordenadas (parâmetros) aleatórias X1=valor aleatório entre a e b X2=valor aleatório entre c e d

30 3:50 Determina direção de busca: exemplo x2=x2+0,3; x1=x1 Função objetivo melhorou? Não, então tenta no outro sentido.

31 3:50 F.O melhorou? Sim, então continua no mesmo sentido

32 3:50 F.O melhorou? Sim, então continua no mesmo sentido

33 3:50 F.O melhorou? Sim, então continua no mesmo sentido

34 3:50 F.O melhorou? Não, então volta para o ponto anterior...

35 3:50 F.O melhorou? Sim, então continua no mesmo sentido...e muda a direção de busca.

36 3:50 E assim segue até encontrar um ponto em que não existe direção de busca que melhore o valor da FO

37 3:50 Método unidirecional 1. Direção de pesquisa paralela aos eixos; 2. Pesquisa em cada direção: espaçamento constante ou variável 3. Critério de parada desvantagens: (ao lado)

38 3:50 Método da rotação das coordenadas (Rosenbrook) Primeiro ciclo igual ao univariacional segundo ciclo com rotação duas alternativas para pesquisa em cada direção: método original que alterna a pesquisa de cada direção em cada tentativa;

39 3:50 Primeiro ciclo direção x1 Primeiro ciclo direção x2

40 3:50 Rosenbrock: Método um pouco mais eficiente Direção de busca é a que potencialmente dará maior incremento da FO

41 3:50 Limitação da busca direta: Ótimos locais Região que atrai solução para o ótimo local

42 3:50 Tentativa de contornar problema: Busca direta com inicialização múltipla Várias tentativas; espera se que o ótimo global seja a melhor solução testada. Problema: Ineficiente e ineficaz quando a FO tem muitos ótimos locais

43 3:50 Técnicas numéricas – Busca direta Busca direta (Rosenbrock e cia.) vantagens: funções descontínuas; otimização por simulação (funções que não podem ser expressas analiticamente - calibração de modelos) desvantagens: funções com picos múltiplos

44 3:50 Técnicas numéricas – Algoritmos genéticos Início Inicialização da população Cálculo da aptidão Solução encontrada? Seleção Reprodução Mutação Fim Nova população

45 3:50 Conceitos de população, reprodução e gerações Filhos são semelhantes aos pais Os pais mais adaptados tem maior probabilidade de gerar filhos Os filhos não são completamente iguais aos pais Algumas regras gerais dos algoritmos genéticos

46 3:50 Pais mais adaptados têm maior probabilidade de gerar filhos (sobrevivência do mais apto = seleção natural) Darwin

47 3:50 Algoritmos genéticos Na natureza: indivíduos mais adaptados têm maior probabilidade de sobreviver até chegar à fase reprodutiva e de participar do processo de reprodução. No algoritmo: pontos com maior FO têm maior probabilidade de serem escolhidos para participar dos complexos.

48 3:50 Algoritmo genético puro 1 - gera população (pontos aleatórios)

49 3: escolhe pontos para participar do processo de reprodução (pontos com melhor FO tem maior probabilidade de escolha

50 3: Exemplo de reprodução: escolhidos dois pontos Xa=8 Xb=19 Xa=01000 binário Xb=10011

51 3:50 Genética: filhos recebem cromossomos dos pais É determinado um (ou mais) ponto de corte (aleatório) Xa=01011 = 11 Xb=10000 = Filho 1: parte dos cromossomos do pai e parte da mãe Filho 2: outra parte dos cromossomos do pai e parte da mãe Filhos:

52 3:50 pais filhos

53 3:50 Genética: filhos recebem cromossomos dos pais É determinado um (ou mais) ponto de corte (aleatório) Xa=01011 = 11 Xb=10100 = Filho 1: sem mutação Filho 2: mutação Filhos: Mutação: evento de baixa probabilidade

54 3:50 Reprodução de todos os pontos escolhidos resulta na nova geração

55 3:50 Depois de algumas gerações

56 3:50 Algumas desvantagens do algoritmo genético puro Números binários Transformação de variáveis de base decimal para binária Variável Y -0, ,3 decimal Usando 10 bits; Resolução = 0,176

57 3:50 Algumas vantagens do algoritmo genético puro Otimização com números inteiros Diâmetros comerciais

58 3:50 Evolução de complexos misturados (Shuffled complex evolution) SCE - UA Usa técnicas de busca aleatória algoritmos genéticos simplex (Nelder e Mead) Proposto por Duan, Gupta e Sorooshian (U. Arizona) Descrito no livro Sistemas Inteligentes da ABRH

59 3:50 Passo 1

60 3:50 Passo 2

61 3:50 Passo 3

62 3:50 Passo 4

63 3:50 Passo 5

64 3:50 Passo 6

65 3:50 Passo 7

66 3:50 Passo 8

67 3:50 Passo 9

68 3:50 Passo 10

69 3:50 Passo 20

70 3: Geração aleatória de pontos Complexos = casais Obs.: Casais podem ser de mais de dois pontos.

71 3: Formar complexos Complexos = casais Obs.: Casais podem ser de mais de dois pontos. Exemplo: complexos de 4 pontos

72 3: Formar sub-complexo (exemplo) Obs.: Nem todos os pontos de um complexo fazem parte do sub-complexo. Exemplo: subcomplexo de 3 pontos extraído de um complexo de 4 pontos. A probabilidade de um ponto do complexo participar do sub-complexo é proporcional à FO.

73 3:50 Define pior ponto do sub-complexo Exemplo: sub-complexo de 3 pontos

74 3:50 Define centróide dos melhores pontos

75 3:50 Passo de reflexão Passo de reflexão: distância a = distância b a b Verifica valor da FO no novo ponto, se é melhor do que pior ponto, novo ponto é aceito, se não, vai para o passo de contração.

76 3:50 Passo de contração a b Passo de contração: distância a = distância b Verifica valor da FO no novo ponto, se é melhor do que pior ponto, novo ponto é aceito, se não, cria ponto aleatório.

77 3:50 Um novo ponto é gerado no espaço definido pelos limites mínimo e máximo de cada um dos parâmetros no complexo. Ponto aleatório

78 3:50 Um novo ponto é gerado no espaço definido pelos limites mínimo e máximo de cada um dos parâmetros no complexo. Ponto aleatório

79 3:50 Nova geração Cada complexo gera um novo ponto (filhote), seja por um passo de reflexão, de contração ou aleatório. O novo ponto substitui o pior ponto do complexo. Ao final de uma rodada de evolução existe uma nova geração, com o mesmo tamanho de população (número de pontos).

80 3:50 Pais mais adaptados têm maior probabilidade de gerar filhos (sobrevivência do mais apto = seleção natural) 1) Classificar os pontos do complexo em ordem de FO (ranking) 2) Atribuir probabilidade de escolha para participar do sub- complexo segundo a função do desenho: Posição no ranking Probabilidade de escolha 0 1 Valor da FO

81 3:50 Complexo Sub-Complexo Exemplo Dois pontos do complexo ficaram fora do sub-complexo. Não necessariamente os piores pontos ficam fora.

82 3:50 Filhos são semelhantes aos pais Genética: filhos recebem cromossomos dos pais a b Algoritmo SCE-UA: No lugar dos casais estão os complexos, que são casais de n pontos

83 3:50 Aplicações Calibração do modelo IPH-2 Calibração multi-objetivo do modelo IPH-2 Calibração multi-objetivo do modelo de grandes bacias Ajuste de parâmetros de curva de infiltração de trincheira (Vladimir)

84 3:50 Calibração automática com SCE-UA Função objetivo: Coeficiente de Nash Sutcliffe

85 3:50 Cada ponto representa os valores dos parâmetros escolhidos. A FO é o coeficiente de Nash Sutcliffe. Para ser avaliada, deve ser realizada uma simulação completa (por exemplo, 10 anos de dados diários).

86 3:50 Teste 1: Calibração com série sintética de vazões Vazão observada é substituída pela vazão gerada pelo modelo Teoricamente o método de calibração deve encontrar os parâmetros utilizados na geração da série. Valores dos parâmetros utilizados no teste

87 3:50 Resultados teste 1 I0 = 50 Em 10 aplicações sucessivas o algoritmo de calibração atingiu sempre o ótimo global (conjunto de parâmetros que gerou a série sintética), em menos do que avaliações da função objetivo Literatura mostra testes semelhantes com métodos Rosenbrock e outros, que não conseguem superar este teste. Valor do parâmetro ao longo do processo

88 3:50 Calibração do modelo IPH-2 (10 vezes) Teste 2: calibração dados observados

89 3:50 SCE-UA aplicado ao IPH-2 Fortes evidências de que o algoritmo encontra o ótimo global. Melhor que Rosenbrock. Pior que calibração manual porque só leva em conta uma função objetivo.

90 3:50 Otimização multi-objetivo Considerar mais de uma FO. Calibração de modelos hidrológicos distribuídos Otimização de sistemas de reservatórios de usos múltiplos (controle de cheias x regularização de vazão) Vazão e evapotranspiração

91 3:50 Otimização multi-objetivo Em geral o ótimo de uma função não corresponde ao ótimo da outra. Função 1 Função 2

92 3:50 Otimização multi-objetivo Um problema de otimização multi-objetivo tem um conjunto de soluções igualmente válidas.

93 3:50 Conjunto de pontos em que a solução não pode ser considerada pior do que qualquer outra solução. Região de Pareto ou Curva de Pareto

94 3:50 Exemplo IPH 2 2 FO: Erro volume e RMSE Faixa válida dos parâmetros.

95 3:50 Geração 1

96 3:50 Geração 10

97 3:50 Geração 20

98 3:50 Geração 50

99 3:50 Geração 138

100 3:50 Avaliação da incerteza: usar todos os conjuntos e gerar vários hidrogramas

101 3:50 Propagação da incerteza: Q 90 calculada, por exemplo, vai de 8,9 a 10,5 m 3.s -1, sendo que a Q 90 observada é de 9,1 m 3.s -1

102 3:50 Problemas de recursos hídricos esperando por uma abordagem com algoritmos genéticos no CTEC Dimensionamento de sistema de reservatórios de abastecimento ou controle de cheias Dimensionamento de canais e redes de abastecimento Otimização de operação de reservatórios Substituir Rosenbrock Substituir programação linear Substituir programação dinâmica

103 3:50 Problemas de otimização com inteiros diâmetros comerciais de condutos parâmetros comerciais de bombas Problemas de recursos hídricos esperando por uma abordagem com algoritmos genéticos no CTEC

104 3:50 Sugestões de leitura Yapo, P. O.; Gupta, H. V.; Sorooshian, S Multi-objective global optimization for hydrologic models. Journal of Hydrology, Vol. 204 pp Sorooshian, S.; Gupta, V. K Model calibration In: Singh, V. J. (editor) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch p. Duan, Q.; Sorooshian, S.; Gupta, V Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research Vol. 28 No. 4. pp Duan, Q.; Sorooshian, S.; Gupta, V Optimal use of the SCE – UA global optimization method for calibrating watershed models. Journal of Hydrology, Vol 158 pp Bonabeau, E.; Dorigo, M.; Theraulaz, G Inspiration for optimization from social insect behaviour. Nature Vol. 406 July pp Goldberg, D Genetic Algorithms in Search, Optimization and Machine Learning Addison- Wesley, 412 pp.

105 3:50 Sugestões de leitura Klemes, V Operational testing of hydrological simulation models. Hydrological Sciences Journal V. 31 No. 1 pp Nash e Sutcliffe, 1970 (Journal of Hydrology) Particle Swarm Optimization


Carregar ppt "1:05 Métodos de Calibração de Modelos hidrológicos Carlos Ruberto Fragoso Júnior."

Apresentações semelhantes


Anúncios Google