A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

UNESP – FEG – DPD – Prof. Edgard - 201101-1 Estatística 1 - Introdução.

Apresentações semelhantes


Apresentação em tema: "UNESP – FEG – DPD – Prof. Edgard - 201101-1 Estatística 1 - Introdução."— Transcrição da apresentação:

1 UNESP – FEG – DPD – Prof. Edgard Estatística 1 - Introdução

2 UNESP – FEG – DPD – Prof. Edgard ESTATÍSTICA DESCREVE, COMPARA e RELACIONA VARIÁVEIS

3 UNESP – FEG – DPD – Prof. Edgard VARIÁVEL ??? VARIÁVEL é simplesmente algo que pode VARIAR VARIÁVEL pode assumir diferentes valores numéricos ou diferentes categorias

4 UNESP – FEG – DPD – Prof. Edgard CONTÍNUA Pode assumir qualquer valor numérico em um dado intervalo Exemplos: diâmetro de um eixo (mm) peso de uma peça fundida (kg) TIPOS DE VARIÁVEL DISCRETA Pode assumir somente determinados valores numéricos em um dado intervalo Exemplos: número de eixos defeituosos em um lote de 20 eixos número de peças com peso fora da especificação em um lote de 10 peças

5 UNESP – FEG – DPD – Prof. Edgard CATEGÓRICA Pode assumir valores dentro de uma classificação por tipos de atributos Exemplos: qualificação de um eixo: { PERFEITO; DEFEITUOSO } classificação do peso de uma peça: { abaixo da especificação; dentro da especificação; acima da especificação } TIPOS DE VARIÁVEL - continuação

6 UNESP – FEG – DPD – Prof. Edgard VARIÁVEL DE RESPOSTA Identificada com a pergunta do Problema Exemplo: Quais as condições de fundição que resulta no menor número de defeitos por peça fundida? X : número de defeitos em uma peça (Variável Discreta) CLASSIFICAÇÃO DE VARIÁVEL VARIÁVEIS DE CONTROLE Fatores ou Condições do Problema No exemplo: M : método de fundição { por gravidade; centrifugação; por pressão } (Variável Categórica) T : temperatura da matéria prima (°C) (Variável Contínua) O Método M e a Temperatura T estão sob controle do Responsável pela Fundição

7 UNESP – FEG – DPD – Prof. Edgard CLASSIFICAÇÃO DE VARIÁVEL VARIÁVEIS DE RUÍDO Fatores relacionados com a pergunta do problema mas cujos efeitos foram mitigados ou considerados desprezíveis Tais considerações devem ser relatadas No exemplo: W 1 : hora do vazamento (Variável Contínua) Programar coleta de dados em diversos horários de todos os turnos W 2 : experiência do operário (Variável Categórica) { pouca experiência; razoável; muita } Sortear os operários que participarão na coleta de dados W3: fornecedor de matéria prima (Variável Categórica) {fornecedor A, B,...} Considerar que a diferença da matéria prima entre os fornecedores é desprezível

8 UNESP – FEG – DPD – Prof. Edgard DEFINIR O PROBLEMA Etapas para Solução de um Problema 2. ESPECIFICAR O PROJETO DE EXPERIMENTO 3. ESPECIFICAR A COLETA DE DADOS 4. ESPECIFICAR AS ESTATÍSTICAS A SEREM UTILIZADAS 5. COLETAR DADOS 6. PROCESSAR DADOS 7. ANALISAR RESULTADOS & APRESENTAR A SOLUÇÃO

9 UNESP – FEG – DPD – Prof. Edgard Etapa 1: Definir o Problema DEFINIR A VARIÁVEL DE RESPOSTA Identificada com a pergunta do problema Exemplo: Quais as condições de fundição que resulta no menor número de defeitos por peça fundida? X : número de defeitos em uma peça DEFINIR AS VARIÁVEIS DE CONTROLE Simplificar o máximo possível No exemplo: M: método de fundição M { M 1 ; M 2 ; M 3 } M 1 : gravidade M 2 : centrifugação M 3 : por pressão T: temperatura da matéria prima T { T 1 ; T 2 ; T 3 } Variável Contínua ( °C ), transformada em Categórica (°C) T1T1 BAIXA T2T2 INTERMEDIÁRIA T3T3 ALTA NÍVEIS

10 UNESP – FEG – DPD – Prof. Edgard Etapa 1: Definir o Problema Variável de Resposta: X : número de defeitos em uma peça Variáveis de Controle ou Fatores: M: método de fundição M { M 1 ; M 2 ; M 3 } Pergunta do Problema: Quais as condições de fundição que resulta no menor número de defeitos por peça fundida? NÍVEIS M 1 : gravidade M 2 : centrifugação M 3 : por pressão T: temperatura da matéria prima T { T 1 ; T 2 ; T 3 } NÍVEIS T 1 : temperatura baixa T 2 : temperatura intermediária T 3 : temperatura alta

11 UNESP – FEG – DPD – Prof. Edgard Projeto de Experimento: possível maneira de MEDIR AS VARIÁVEIS visando obter a resposta do problema Etapa 2: Especificar o Projeto de Experimento

12 UNESP – FEG – DPD – Prof. Edgard Projeto Fatorial considera todas as combinações dos vários Níveis dos Fatores (Níveis das Variáveis de Controle) Cada combinação denomina-se TRATAMENTO Etapa 2: Especificar o Projeto de Experimento Tratamentos: Replicação (Tamanho da Amostra por Tratamento) Realização de mais de uma medida para cada Tratamento No exemplo: 7 peças fundidas para cada Tratamento Total de Unidades Experimentais: Número de Tratamentos X Número de Replicações No exemplo: 9 Tratamentos x 7 Replicações = 63 peças Exemplo da Fundição: M1 & T1M1 & T1 M1 & T2M1 & T2 M2 & T2M2 & T2 M3 & T2M3 & T2 M3 & T1M3 & T1 M2 & T1M2 & T1 M1 & T3M1 & T3 M2 & T3M2 & T3 M3 & T3M3 & T3 Níveis do Fator Método de Fundição M 1 : gravidade M 2 : centrifugação M 3 : por pressão Níveis do Fator Temperatura T 1 : temperatura baixa T 2 : temperatura intermediária T 3 : temperatura alta

13 UNESP – FEG – DPD – Prof. Edgard Quais Variáveis devem ser medidas? Como será realizada a medição das Variáveis? Qual a precisão das medidas? Como será realizada a coleta de dados? Qual o tipo de amostragem? Qual o tamanho da amostra? Qual o custo e o tempo para realizar a Coleta de Dados Etapa 3: Especificar a Coleta de Dados

14 UNESP – FEG – DPD – Prof. Edgard Quanto maior : mais precisos são os resultados mais confiáveis são as conclusões mais tempo mais caro Limite: Exame de toda a população (Censo) Na prática !!! censo pode ser menos preciso que amostragem (problemas operacionais ou fraude) Qual deve se o Tamanho da Amostra? Etapa 3: Especificar a Coleta de Dados

15 UNESP – FEG – DPD – Prof. Edgard Etapa 4: Especificar as Estatísticas Estatísticas Descritivas Possibilitam descrever as Variáveis No exemplo da fundição serão utilizadas: Média Tendência Central Desvio padrão Coeficiente de Variação Diagrama de Intervalos de Confiança Estatísticas Indutivas Possibilita tirar conclusões acerca da População a partir de dados da Amostra As inferências (conclusões) acerca da População são sujeitas à Variabilidade Amostral Determina´se com que Probabilidade se pode confiar nos resultados obtidos dos dados coletados No exemplo da fundição será utilizado: Intervalo de Confiança Dispersão

16 UNESP – FEG – DPD – Prof. Edgard Etapa 5: Coletar Dados Evitar subjetividade no trabalho de campo Coletar os dados metodicamente Seguir o especificado no Projeto de Experimento Dados coletados no exemplo da fundição: Número de defeitos / peça TemperaturaReplicaçãoMétodo 1Método 2Método 3 baixa intermediária alta

17 UNESP – FEG – DPD – Prof. Edgard Etapa 6: Processar Dados Resultado do Processamento de Dados do exemplo da fundição: : Média Amostral (média de defeitos por peça da amostra) S : Desvio Padrão Amostral : Coeficiente de Variação MétodoTemperatura S CV M 1 : Gravidade T 1 :baixa6,90,6910,1% T 2 : intermediária7,71,1114,4% T 3 : alta8,91,2113,7% M 2 : Centrifugação T 1 :baixa2,90,3813,2% T 2 : intermediária4,30,7617,6% T 3 : alta6,11,0717,4% M 3 : Por pressão T 1 :baixa5,10,6913,4% T 2 : intermediária2,30,7633,1% T 3 : alta1,10,9078,7%

18 UNESP – FEG – DPD – Prof. Edgard Etapa 6: Processar Dados Resultado do Processamento de Dados do exemplo da fundição: IC: Intervalo de Confiança Pr (Lim. Inf. < E(X) < Lim. Sup.) = 0,95 (95%) E(X) : Média de defeitos por peça considerando todas as peças fundidas (População), utilizando determinado Método e uma dada Temperatura : Média de defeitos por peça em uma Amostra de 7 peças, para um dado Método e Temperatura MétodoTemperatura Lim. Inf. Lim. Sup Amplitude M 1 : Gravidade T 1 :baixa6,96,27,51,3 T 2 : intermediária7,76,78,72,1 T 3 : alta8,97,710,02,2 M2: Centrifugação T 1 :baixa2,92,53,20,7 T 2 : intermediária4,33,65,01,4 T 3 : alta6,15,27,12,0 M3: Por pressão T 1 :baixa5,14,55,81,3 T 2 : intermediária2,31,63,01,4 T 3 : alta1,10,32,01,7 X: número de defeitos por peça

19 UNESP – FEG – DPD – Prof. Edgard Etapa 6: Processar Dados Resultado do Processamento de Dados do exemplo da fundição: Defeitos / peça Temperatura (°C) baixaintermediáriaalta T1T1 T2T2 T3T3 Diagrama de Intervalos de Confiança M 1 : Gravidade M 2 : Centrifugação M 3 : Por pressão

20 UNESP – FEG – DPD – Prof. Edgard Etapa 7: Analisar Resultados e Apresentar Solução Análise da Interação entre Método e Temperatura Nos Métodos M 1 e M 2 o número de defeitos por peça fundida cresce com o aumento da Temperatura Entretanto, no Método M 3 o número de defeitos por peça fundida decresce com o aumento da Tempertura Portanto, conclui-se que existe Interação entre Método de Fundição e Temperatura da matéria prima a ser vazada no molde MétodoTemperaturaCVDispersão M 1 : Gravidade T 1 :baixa10,1%BAIXA T 2 : intermediária14,4%BAIXA T 3 : alta13,7%BAIXA M 2 : Centrifugação T 1 :baixa13,2%BAIXA T 2 : intermediária17,6%MODERADA T 3 : alta17,4%MODERADA M 3 : Por pressão T 1 :baixa13,4%BAIXA T 2 : intermediária33,1%ALTA T 3 : alta78,7%MUITO ALTA Análise da Dispersão (vide quadro abaixo) Método M 1 apresenta Baixa Dispersão do número de defeitos por peça em todos os Níveis de Temperatura Método M3 apresenta Muito Alta Dispersão do número de defeitos por peça na Temperatura Alta CV: Coeficiente de Variação CV < 5% : Dispersão Muito Baixa 5% < CV < 15% : Dispersão Baixa 15% < CV < 30% : Dispersão Moderada 30% 30% : Dispersão Alta CV > 50% : Dispersão Muito Alta

21 UNESP – FEG – DPD – Prof. Edgard Etapa 7: Analisar Resultados e Apresentar Solução Análise de Intervalos de Confiança ( IC ) Método M 2 no nível de Temperatura Baixa apresenta o IC com menor Amplitude Todos os Métodos apresentam IC com menor amplitude no nível de Temperatura Baixa Método M 1 no nível de Temperatura Alta apresenta o IC com maior Amplitude Todos os Métodos apresentam IC com maior amplitude no nível de Temperatura Alta Método Solução do Problema De acordo com as análises acima, pode-se considerar que o Método M 3 e a Temperatura Alta são as condições de fundição que resulta no menor número de defeitos por peça fundida

22 UNESP – FEG – DPD – Prof. Edgard Estatística Indutiva (Cap.8 até 17) Esquema da Disciplina: Probabilidades (Cap.3 até 7) Introdução (Cap.1) Estatística Descritiva (Cap.2)

23 UNESP – FEG – DPD – Prof. Edgard Estatísticas Descritivas (Capítulo 2) Estatísticas de Tendência Central Média Mediana Moda Estatísticas de Dispersão Variância Desvio padrão Coeficiente de Variação Amplitude Outras Estatísticas Descritivas Coeficiente de Assimetria Coeficiente de Curtose Coeficiente de Correlação Descrição Gráfica Diagrama de Barras Diagrama Circular (Pizza) Histograma Diagrama de Caule e Folhas Diagrama de Caixa e Bigode (box plot) Diagrama de Dispersão (Reta de Regressão) Diagrama de Intervalos de Confiança

24 UNESP – FEG – DPD – Prof. Edgard Estatísticas Indutivas Possibilitam tirar conclusões acerca da População a partir de dados da Amostra As inferências (conclusões) são sujeitas à Variabilidade Amostral Determina-se com que Probabilidade se pode confiar nos resultados obtidos dos dados coletados Principais Estatísticas Indutivas Intervalo de Confiança Comparação de uma Média (Teste z) Comparação entre duas Médias (Teste t) Comparação entre várias Médias (Anova) Comparação de uma Variância (Teste ) Comparação entre duas Variâncias (Teste F) Comparação entre várias Variâncias (*) Comparação de uma Proporção (Teste z) Comparação entre duas Proporções (Teste z) Teste de Aderência (Teste ; Teste KS **) Comparação entre duas Distribuições (***) Teste de Independência (Teste ) Correlação Regressão (*) Teste de Cochram; Teste de Bartlett (**) Teste Kolmogorov – Smirnov (***) Teste dos Sinais; Teste da Mediana; Teste de Sequências; Teste de Wilcoxon, Mann e Whitney

25 UNESP – FEG – DPD – Prof. Edgard Amostragem Probabilística: Amostragem Simples Amostragem Sistemática Amostragem Estratificada Amostragem por Conglomerados Amostragem Múltipla (Seqüencial) Amostragem Não-Probabilística: Amostragem a Esmo Amostragem Intencional Tipos de Amostragem:

26 UNESP – FEG – DPD – Prof. Edgard Numerar os elementos da População 2.Gerar números aleatórios que corresponderão aos elementos da Amostra Procedimento para Amostragem Simples: Números aleatórios ou randômicos: Tem igual probabilidade de ocorrência Tabela de Números Aleatórios (livros) Usando o Excel: Ferramentas >> Análise de Dados >> Geração de Número Aleatório >> OK >> preencher campos (Distribuição Uniforme) DICA: Na amostragem sem repetição, os números aleatórios repetidos devem ser desprezados

27 UNESP – FEG – DPD – Prof. Edgard Métodos usados na Amostragem Simples: 1.Sortear uma linha e uma coluna da Tabela de Números Aleatórios (existente no livro texto) e, a partir daí, selecionar números seqüencialmente (por linha ou por coluna) 2.Usar a função ALEATÓRIOENTRE (Excel): Selecionar fx >> Matemática e trigonométrica >> ALEATÓRIOENTRE >> Digitar os limites inferior e superior da População >> clicar OK >> copiar o resultado e colar em tantas células quanto for o tamanho da amostra 3.No menu Ferramentas do Excel, selecionar: Análise de Dados >> Amostragem >> Digitar: Intervalo de Entrada >> Selecionar: Aleatório >> Digitar o tamanho da amostra (Número de amostras) >> Optar: local da saída >> clicar OK

28 UNESP – FEG – DPD – Prof. Edgard Numerar os elementos da População, de acordo com sua posição. Exemplo: seqüência de peças produzidas 2.Sortear um elemento da População que corresponderá ao primeiro elemento da Amostra ( i ) 3. Definir o período de amostragem ( r = N/n ) 4. Os demais elementos da amostra serão escolhidos de maneira sistemática, assim: primeiro elemento: i segundo elemento: i + r terceiro elemento: i + 2.r... n-ésimo elemento: i + (n-1).r Procedimento para Amostragem Sistemática:

29 UNESP – FEG – DPD – Prof. Edgard Amostragem Estratificada População heterogênea, constituída de uma partição por estratos. Exemplos de Estratos: sexo, nível de renda, idade, escolaridade, local de residência; no caso de empresas: nível de faturamento, região de atuação, etc. Efetua-se uma amostragem (simples ou sistemática) em cada estrato O tamanho da amostra de cada estrato pode ser, ou não, proporcional à quantidade de elementos de cada estrato na População

30 UNESP – FEG – DPD – Prof. Edgard Amostragem Estratificada População heterogênea, constituída de uma partição por estratos. Exemplos de Estratos: sexo, nível de renda, idade, escolaridade, local de residência; no caso de empresas: nível de faturamento, região de atuação, etc. Efetua-se uma amostragem (simples ou sistemática) em cada estrato O tamanho da amostra de cada estrato pode ser, ou não, proporcional à quantidade de elementos de cada estrato na População

31 UNESP – FEG – DPD – Prof. Edgard Amostragem Múltipla (Seqüencial) Amostra retirada em etapas sucessivas. Dependendo do resultado, etapas suplementares podem ser dispensadas. Exemplo: testar a qualidade de um lote utilizando-se uma amostra de peças; caso o número de peças defeituosas exceder determinado valor, deve-se aumentar o tamanho da amostra de peças a serem testadas até se decidir sobre a qualidade do lote. Caso particular: Amostragem Seqüencial, quando a amostra vai sendo acrescida item por item, até se chegar a uma conclusão...

32 UNESP – FEG – DPD – Prof. Edgard Amostragem Múltipla (Seqüencial) Amostra retirada em etapas sucessivas. Dependendo do resultado, etapas suplementares podem ser dispensadas. Exemplo: testar a qualidade de um lote utilizando-se uma amostra de peças; caso o número de peças defeituosas exceder determinado valor, deve-se aumentar o tamanho da amostra de peças a serem testadas até se decidir sobre a qualidade do lote. Caso particular: Amostragem Seqüencial, quando a amostra vai sendo acrescida item por item, até se chegar a uma conclusão...

33 UNESP – FEG – DPD – Prof. Edgard Amostragem Múltipla (Seqüencial) Amostra retirada em etapas sucessivas. Dependendo do resultado, etapas suplementares podem ser dispensadas. Exemplo: testar a qualidade de um lote utilizando-se uma amostra de peças; caso o número de peças defeituosas exceder determinado valor, deve-se aumentar o tamanho da amostra de peças a serem testadas até se decidir sobre a qualidade do lote. Caso particular: Amostragem Seqüencial, quando a amostra vai sendo acrescida item por item, até se chegar a uma conclusão...

34 UNESP – FEG – DPD – Prof. Edgard Quais experimentos podemos realizar num estudo antropométrico? Coletar dados antropométricos com régua e balança Coletar dados antropométricos com câmera digital de precisão Qual podemos realizar agora no Campus? Coletar dados antropométricos com régua e balança Teste 1.1: Estudo Antropométrico

35 UNESP – FEG – DPD – Prof. Edgard Quais as características antropométricas dos alunos que cursam a disciplina Estatística ? Características antropométricas: Índice de Massa Corporal Divina Proporção Etc. Teste 1.1: Estudo Antropométrico

36 UNESP – FEG – DPD – Prof. Edgard Quais as variáveis ? Fonte: Estudo antropométrico da população portuguesa, Grupo de Engenharia Humana, Departamento de Produção e Sistemas Escola de Engenharia da Universidade do Minho Teste 1.1: Estudo Antropométrico

37 UNESP – FEG – DPD – Prof. Edgard Quais as variáveis do presente estudo ? 4 Peso 4 Estatura 4 Altura do Umbigo 4 Altura do Ombro Direito 4 Altura do Ombro Esquerdo Quais as características da população que devem ser consideradas no estudo ? 4 Identificação do aluno (N o. Matrícula) 4 Idade 4 Sexo Teste 1.1: Estudo Antropométrico

38 UNESP – FEG – DPD – Prof. Edgard Coleta de dados: Teste 1.1: Estudo Antropométrico

39 UNESP – FEG – DPD – Prof. Edgard Quais Estatísticas Descritivas utilizar ? Estatísticas de Tendência Central Média Mediana Moda Estatísticas de Dispersão Variância Desvio padrão Coeficiente de Variação Amplitude Descrição Gráfica Diagrama de Barra Diagrama Circular (pizza) Histograma Diagrama de Caule e Folhas Diagrama de Caixa e Bigode (box plot) Diagramas de Dispersão Reta de Regressão Teste 1.1: Estudo Antropométrico

40 UNESP – FEG – DPD – Prof. Edgard Experimento: Estudo Antropométrico População: alunos da disciplina Probabilidade e Estatística Amostra: alunos presentes na primeira aula da referida disciplina Caracterização do aluno: número da matrícula, sexo, idade Medidas: peso, estatura, altura do umbigo Teste 1.1: Roteiro

41 UNESP – FEG – DPD – Prof. Edgard Sugestões para a elaboração do relatório do experimento: Estudo Antropométrico Página de rosto Título do trabalho; Resumo, com 15 linhas, no máximo; Nome e número do autor; Nome da disciplina; Nome do docente; Ano 1. Introdução Apresentar o tema (assunto) objeto de estudo; Descrever em linhas gerais o que se pretende estudar, isto é, o objetivo do estudo antropométrico; Destacar a Divina Proporção(fi) e o Índice de Massa Corporal (IMC); Apresentar a justificativa da realização do estudo; Evidenciar a importância da Estatística na realização do estudo; Apresentar sucintamente o conteúdo das várias seções que compõem o relatório. Teste 1.1: Roteiro

42 UNESP – FEG – DPD – Prof. Edgard Detalhamento do Estudo apresentar as características relevantes do ambiente objeto de estudo; detalhar o objetivo do estudo, especificando as questões a serem respondidas; descrever as simplificações consideradas (limitações do estudo realizado); definir as variáveis envolvidas no estudo; apresentar os recursos disponíveis (humanos, materiais,instalações) e suas características. 3. Apresentação do Método detalhar o procedimento utilizado na coleta de dados; descrever e comentar o planejamento do experimento e o plano de amostragem; apresentar as técnicas estatísticas utilizadas; apresentar o(s) software(s utilizados. Teste 1.1: Roteiro

43 UNESP – FEG – DPD – Prof. Edgard Descrição e Análise dos dados coletados 5. Considerações Finais apresentar os dados coletados (tabela); apresentar os principais gráficos, diagramas, histogramas, incluindo as análises e os comentários; apresentar as medidas de posição (média, mediana, moda), as medidas de dispersão (variância,desvio-padrão,coeficiente de variação), os coeficientes de correlação e as retas de regressão, incluindo as análises e os comentários. apresentar os principais resultados e conclusões do trabalho; apontar possíveis extensões (futuros trabalhos). Teste 1.1: Roteiro

44 UNESP – FEG – DPD – Prof. Edgard Dicas: i)Utilizar o Microsoft Excel; ii)Colocar-se na posição de um Estatístico apresentando um relatório profissional e não de um aluno fazendo um relatório para o professor. 7. Anexos ( conjunto de todas as tabelas, gráficos, diagramas, histogramas, etc. ) 6. Referências bibliográficas Teste 1.1: Roteiro


Carregar ppt "UNESP – FEG – DPD – Prof. Edgard - 201101-1 Estatística 1 - Introdução."

Apresentações semelhantes


Anúncios Google