A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise M. Ester, H-P. Kriegel, J. Sander, X. Xu Apresentação: Léia Michelle.

Apresentações semelhantes


Apresentação em tema: "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise M. Ester, H-P. Kriegel, J. Sander, X. Xu Apresentação: Léia Michelle."— Transcrição da apresentação:

1 A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise M. Ester, H-P. Kriegel, J. Sander, X. Xu Apresentação: Léia Michelle de Souza

2 Algoritmos Baseados em Densidade Esses algoritmos assumem que os clusters são regiões de alta densidade de padrões separadas por regiões com baixa densidade, no espaço de padrões. Um cluster é definido como um componente denso conectado em qualquer direção dada pela densidade.

3 Densidade – Características Principais Descoberta de grupos de forma arbitrária; Tratamento de Ruído; Apenas uma escaneada; É necessário parâmetros de densidade como condições. Separar regiões de objetos de alta e baixa densidade.

4 DBScan – Density Based Spatial Clustering of Applications with Noise É um algoritmo baseado em densidade para agrupar os objetos ou pontos.

5 1. Parâmetros Para se iniciar um algoritmo DBScan é necessário definir dois parâmetros principais: Raio - Distância entre um objeto (Ponto) e seus vizinhos. MinPts - Objetos(Pontos) Central.

6 2. Parâmetros Eps Valor que descreve a Medida de Proximidade, isto é, quantos pontos vizinhos próximos, um par de pontos necessita ter em comum para serem considerados próximos. Raio máximo da vizinhança MinPts Valor relativo a densidade mínima, ou seja, número de vizinhos próximos que um ponto precisa ter para ser considerado Core Point. Número de pontos mínimo em Eps desse ponto.

7 3. Parâmetros Neps(p) : {q D | dist(p,q) < = Eps} Um ponto p é alcançável pela densidade de um ponto q Eps, MinPts se: 1) p Neps(q) 2)Condição de Ponto Núcleo: |Neps(q)| >= MinPts

8 Exemplo 1 p q p : border point q : core point MinPts = 5 Eps = 1cm

9 1. Densidades Alcançável pela Densidade Um ponto p é alcançável pela densidade de um ponto q Eps, MinPts se existe uma cadeia de pontos p1,...,pn,p1 = q,pn = p tal que pi+1 é diretamente alcançável pela Densidade de pi. p1 p q

10 2. Densidades Conectado pela Densidade Um ponto p é conectado pela densidade a um ponto q Eps, MinPts se existir um ponto O para ambos, p e q são alcançáveis pela densidade de O. q O p

11 1. Regras para gerar Clusters Um ponto pertence a um cluster K somente se estiver localizado no raio de um ponto central do cluster; Um ponto central p, no raio de um outro ponto central pi qualquer, precisa pertencer ao mesmo cluster K; Um ponto não central p, no raio de um ponto central p1...pi, onde i>0 precisa pertencer ao mesmo cluster cujo objeto central esteja entre p1...pi; Um ponto não central p que não estiver no raio de nenhum objeto central é considerado ruído.

12 2. Regras para gerar Clusters Para a geração de Clusters é necessário que se teste o raio de cada ponto da base de dados. Se o raio de um objeto (ponto) p contém mais de um ponto central (MinPts), então criaremos um novo Clusters para o objeto p. Os objetos (pontos) no raio p são então adicionados ao novo Cluster. Pode-se ocorrer que um objeto central que já pertença a um Cluster, seja encontrado dentro de outro Cluster.

13 3. Regras para gerar Clusters Os dois Clusters serão agrupados em um só e o processo se encerra quando não existir novos pontos a serem adicionados a qualquer Cluster. C1 C2

14 Algoritmo do DBScan Recupere todos os pontos alcançáveis pela densidade de p,Eps,MinPts P Se p é um ponto core, forma-se um grupo Se p é um ponto fronteira, não há pontos alcançáveis pela densidade de p, visitar o próximo ponto Continue o processo até que todos os pontos tenham sido processados Escolha um Ponto arbitrariamente

15 Distância entre dois pontos Dist(S1,S2) = min{dist(p,q) | p S1,q S2} DBScan (SetOfPoints, Eps,MinPts) //SetOfPoints is UNCLASSIFIED ClusterId : = nextId(NOISE); FOR i FROM 1 TO SetOfPoints.size DO Point :=SetOfPoints.get(i); IF Point.ClId = UNCLASSIFIED THEN IF ExpandCluster(SetOfPoints,Point,ClusterId,E ps,MinPts) THEN ClusterId := nextId(ClusterId) END IF END FOR END;//DBScan

16 Clusters ExpandCluster(SetOfPoints,Point,ClId,Eps,Minpts):Boolean; seeds:=SetOfPoints,regionQuery(Point,Eps); IF seeds.size Empty DO CurrentP:=seeds.firts(); Result:= SetOfPoints.regionQuery(currentP,Eps); IF result.size > = MinPts THEN FOR i FROM 1 TO result.size DO resultP:=result.get(i); IF resultP.ClId IN {UNCLASSIFIED,NOISE} THEN IF resultP.ClId = UNCLASSIFIED THEN seeds.append(resultP); END IF SetOfPoints.changeClId(result,ClId); END IF END FOR END IF Seeds.delete(currentP); END WHILE RETURN True; END IF END;

17 Parâmetros Valor de EpsValor de MinPtResultado Alto Poucos clusters grandes e densos Baixo Muitos clusters pequenos e menos densos AltoBaixoClusters grandes e menos densos BaixoAltoClusters pequenos e densos

18 Avaliação de desempenho Agrupamentos descobertos por CLARANS

19 Avaliação de desempenho Agrupamentos descobertos por DBSCAN

20 Run Time em segundos

21 Algoritmo DBScan Vantagem Eficiente em tratar grandes bases de dados Menos sensível a ruídos Forma clusters de formato arbitrário Usuário não precisa especificar a quantidade de clusters Desvantagem Sensível aos parâmetros de entrada(Eps e MinPt)

22 Problemas do DBScan Agrupamentos diferentes podem ter mesmo densidades diferentes. Agrupamentos podem estar em hierarquias.

23 Referências Bibliográficas


Carregar ppt "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise M. Ester, H-P. Kriegel, J. Sander, X. Xu Apresentação: Léia Michelle."

Apresentações semelhantes


Anúncios Google