A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

O Efeito Casimir e a Constante Cosmológica Rafael Bán Jacobsen Horacio Dottori (orientador) IF - UFRGS.

Apresentações semelhantes


Apresentação em tema: "O Efeito Casimir e a Constante Cosmológica Rafael Bán Jacobsen Horacio Dottori (orientador) IF - UFRGS."— Transcrição da apresentação:

1 O Efeito Casimir e a Constante Cosmológica Rafael Bán Jacobsen Horacio Dottori (orientador) IF - UFRGS

2 Método Seicho No Ie de Apresentação

3 Equações de Friedmann (1922) As Equações de Friedmann são um conjunto de equações em cosmologia física que governam a expansão métrica do espaço em modelos homogêneos e isotrópicos do Universo dentro do contexto da Teoria Geral da Relatividade. Foram apresentadas por Alexander Friedman em 1922 a partir das equações de campo de Einstein. Alexander Friedmann ( ) Bases da Cosmologia: Crença na RG Homogeneidade cósmica Isotropia cósmica Universalidade das leis físicas

4 Equações de Friedmann (1922) G é a constante gravitacional c é a velocidade da luz a é o fator de escala do Universo (hoje, a =1, por definição) K é a curvatura gaussiana ρ (densidade de matéria e radiação total) e p (pressão) são funções de a O parâmetro de Hubble, H, é a velocidade de expansão do universo Λ é a constante cosmológica Com condições de contorno apropriadas, podemos resolver essas 2 equações (mais a EoS p = p(ρ)) para obtermos ρ(t), p(t) e a (t) – modelo cosmológico!

5 Equações de Friedmann (1922) Relações importantes: Parâmetro de densidade: Parâmetro cosmológico: Parâmetro de curvatura: As proporções dessas 3 quantidades definem diferentes modelos cosmológicos

6 Equações de Friedmann (1922) Utilizando o fato de que ρ=ε/c², a primeira das equações de Friedmann pode ser escrita como: Ainda, se definirmos a equação fica escrita na forma Onde ε total é a densidade de energia total do universo, incluindo matéria, radiação, constante cosmológica...

7 Equações de Friedmann (1922) Resultado importante: densidade crítica ε c É a densidade total de matéria e energia (de todos os tipos possíveis) que é necessária para que o nosso universo seja exatamente plano (curvatura nula). Se a sua densidade for um pouco maior, o universo será fechado (curvatura positiva). Se a sua densidade for um pouco menor, o universo será aberto (curvatura negativa). Para(parâmetro de Hubble atualmente medido)

8 A Constante Cosmológica Λ (1917) As equações de Friedmann, sem o termo de Λ, descrevem um universo preenchido por matéria não-relativística e alguma radiação. Tal universo não pode ser estático e deve colapsar gravitacionalmente. Foi exatamente para impedir esse colapso e forçar um universo estático que Einstein introduziu Λ nas equações. Vejamos como a constante cosmológica opera... GRAVIDADE: ATRAÇÃO FATAL!

9

10 A Constante Cosmológica Λ (1917) Para um universo de densidade ρ, o potencial gravitacional é dado pela equação de Poisson: A aceleração a em um ponto qualquer do espaço pode ser encontrada tomando o gradiente desse potencial: Em um universo estático, a deve ser nulo em todos os pontos do espaço. Logo, o potencial φ deve ser constante no espaço. Porém, se φ é constante, então: Ou seja: o único universo estático possível é aquele sem matéria alguma!

11 A Constante Cosmológica Λ (1917) Como Einstein resolveu o problema? Em termos newtonianos, o que ele fez foi equivalente a reescrever a equação de Poisson na forma: Com a introdução de Λ nas equações, podemos ter um universo estático se

12

13 Origem Física de Λ? Como Λ deve existir mesmo em um espaço livre de matéria e radiação, uma candidata natural para explicar a origem física de Λ é a energia do vácuo quântico. Ponto de vista clássico: Nothing can come from nothing. (Rei Lear, Ato I, Cena I)

14 Origem Física de Λ? Ponto de vista quântico: Princípio da incerteza de Heisenberg permite que pares partícula-antipartícula apareçam espontaneamnete e se aniquilem em um vácuo outrossim vazio. A energia total e o tempo de vida dessas partículas devem satisfazer a relação: ΔE Δt h Assim como existe uma densidade de energia ρc 2 associada às partículas reais, existe uma densidade de energia do vácuo ε vac associada com os pares virtuais partícula-antipartícula.

15 Origem Física de Λ? Estimando a ε vac : Comprimento de Planck: Massa de Planck: Energia de Planck: Tomando como valor natural para a densidade de energia do vácuo o valor da densidade de energia de Planck, temos: Esse é um valor 124 ordens de grandeza maior do que a densidade crítica do universo!

16

17 O Universo em Expansão (1929) Em 1929, analisando a luz de galáxias distantes e verificando que esta sofria um deslocamento para o vermelho, Edwin Hubble demonstrou que as galáxias se afastam em grande velocidade e que essa velocidade aumenta com a distância. A relação entre a velocidade e a distância da Terra é conhecida como a Lei de Hubble. A razão entre os dois valores é conhecida como Constante de Hubble (H ~ 70 km/s/Mpc).

18 Λ: O maior erro de Einstein? Com a descoberta de Hubble, Einstein abandonou a constante cosmológica, mais tarde referindo-se a ela como o seu maior erro (na verdade, foi Gamow quem disse que Einstein disse...). O Memorial Albert Einstein, na National Academy of Sciences (Washington): cadê o Λ?

19 Λ: O maior erro de Einstein? Mas parece que nem o próprio Einstein estava tão certo de seu erro. Em 1932, ele escreveu a respeito da constante cosmológica: Increase in precision data will enable us in the future to fix its sign and determine its value. As palavras de Einstein foram um brilhante vaticínio...

20 Expansão Acelerada (1998) Em 1998, foi construído o primeiro diagrama de Hubble utilizando-se supernovas do tipo Ia, cuja magnitude (brilho intrínseco) é bem conhecida. Como são muito brilhantes, podem ser observadas a distâncias cosmológicas. O diagrama mostrou que a expansão do universo está se acelerando. Resultado encontrado por Perlmutter et al. e rapidamente confirmado por Riess et al. As linhas mostram as predições para modelos cosmológicos com diferentes valores dos parâmetros de densidade m e Λ. Os pontos correspondentes aos dados observacionais estão dominantemente acima da linha para um universo com =0. No painel inferior, tendo-se suprimido o efeito da lei do inverso do quadrado, é mostrada mais claramente a diferença entre os modelos, evidenciando por que um modelo com >0 é favorecido. Eixo horizontal: desvio para o vermelho (z) Eixo vertical: diferença entre magnitudes aparente (m) absoluta (M), que se relaciona com a distância por:

21 Modelo Cosmológico Padrão Observações mostram que a densidade do nosso universo está hoje muito próxima da densidade crítica (Ω K = ) Resultados das SN Ia apontam para um universo dominado por uma constante cosmológica (Ω m = 0.3 e Ω Λ = 0.7)

22 Modelo Cosmológico Padrão

23 Energia Escura Nosso universo é composto 70% de algo que não sabemos o que é. Esse algo deve existir mesmo na ausência de matéria e radiação e se comporta como uma força anti-gravitacional, acelerando a expansão do cosmos (o lado negro da força!). Esse algo pode ser descrito em termos de uma constante cosmológica, cujo valor, porém, é muitíssimo menor do que a abundante energia do vácuo quântico.

24 Dificuldades do Modelo Padrão Problema do horizonte: universo parece o mesmo em lados opostos do céu (horizontes opostos) embora não tenha havido tempo, desde o Big Bang, para a luz (ou qualquer outra coisa) viajar através do universo e voltar. Sendo assim como os horizontes opostos sabem como manter-se simetricamente um em cada lado? Problema da planicidade: as equações de Friedmann mostram que Ω m,Λ - 1 = K/( a ² H²). Durante a maior parte de vida do nosso universo, o termo a ² H² diminui, o que implicaria um valor maior do que 1 para Ω m,Λ, mas as observações, como vimos, sugerem Ω m,Λ = 1 (ou muito perto disso). Como explicar a contradição? Problema da abundância dos monopolos magnéticos: Os monopolos magnético são previstos pelos modelos de unificação das forças fundamentais forte, fraca e eletromagnética (GUTS). Esses modelos prevêem a existência de uma quantidade abundante dessas partículas, que seriam produzidas nos primeiros estágios do universo primitivo. Como essas partículas não são observadas, deve-se incorporar um mecanismo que elimine sua disseminação no universo.

25 Inflação (1981) A teoria inflacionária propõe uma solução para esses problemas! Os problemas da cosmologia do Big Bang consistem no fato de que o Universo sempre exibiu uma expansão desacelerada. Se assumirmos a existência de um estágio no Universo primitivo com uma expansão acelerada, então d a /dt (= a H) aumenta durante a inflação. Então o raio comóvel de Hubble, ( a H) -1, diminui na fase inflacionária. Essa propriedade é o ponto chave para resolvermos os quebra-cabeças cosmológicos do modelo cosmológico padrão do Big Bang.

26 Inflação (1981) Solução do problema da planicidade: como o termo a²H² na equação Ω m,Λ - 1 = K/( a ² H²) aumenta durante a inflação, Ω m,Λ se aproxima rapidamente de um. Após o fim do período inflacionário, a evolução do universo é seguida pela fase de Big Bang convencional e |Ω m,Λ – 1| começa a aumentar. A despeito disso, contanto que a expansão inflacionária ocorra suficientemente e torne Ω m,Λ muito próximo de um, Ω m,Λ permanece da ordem de um mesmo na época presente. A época da inflação "esticou" o Universo tão violentamente que o Universo é na verdade plano (ou, na pior das hipóteses, muito perto disso). Qualquer curvatura que o Universo pode ter tido antes da inflação foi destruída pela enorme expansão, fazendo com que o Universo ficasse plano.

27 Inflação (1981) Solução do problema do horizonte: o problema de horizonte é resolvido porque a inflação trouxe regiões que já tinham tido tempo de se comunicar para posições bem distantes umas das outras, fora de comunicação. O Universo durante a época da inflação expandiu muito mais rapidamente do que a velocidade da luz. Logo, regiões que antes da inflação poderiam ter estado muito próximas, foram levadas para pontos afastados (a relatividade restringe a velocidade da matéria e energia como sendo sempre menor que a da luz, mas não restringe a velocidade do Universo como um todo). As propriedades de duas regiões opostas no Universo atual podem então ser as mesmas porque estas regiões estavam em contato antes da inflação.

28 Inflação (1981) Solução do problema dos monopolos magnéticos: se monopolos magnéticos foram criados antes ou durante a inflação, ao final do processo de crescimento exponencial eles devem ter sido diluídos a um nível indetectável. Densidade de monopolos no início da inflação: m -3 Densidade de monopolos no fim da inflação: 5 x m -3 ~ 15 pc -3 Densidade de monopolos hoje (após expansão adicional): 1 x Mpc -3

29 Inflação (1981) Como a inflação funciona? A energia que promove a rápida expansão inflacionária vemd e um campo escalar que deve surgir como parte de uma quebra espontânea de simetria na dinâmica de uma possível teoria unificada das interações. Esse campo é chamado de inflaton. Em uma métrica associada ao crescimento exponencial, dada por sua equação de movimento é e a equação de Einstein com o campo escalar fica

30 Inflação (1981) O potencial do inflaton:

31 Mudando de assunto...

32 Efeito Casimir (1948) Tirando fatias da abundante energia do vácuo quântico! O Efeito Casimir, em sua forma mais simples, aparece na interação de um par de placas planas e condutoras, eletricamente neutras, devido a perturbações no vácuo do campo eletromagnético. É um efeito puramente quântico (não há força entre as placas de acordo com a eletrodinâmica clássica). Portanto, é apenas o vácuo, isto é, o estado fundamental da eletrodinâmica quântica que faz com que as placas se atraiam mutuamente. d = 1 μm

33 Efeito Casimir (1948) Característica única da força de Casimir é sua forte dependência na forma do sistema físico considerado, variando de atrativa a repulsiva, dependendo, basicamente, da forma dos campos e das condições de contorno (geometria, topologia e dimensionalidade). Exemplos:

34 Efeito Casimir: Campo Espinorial em Sacola Energia de ponto zero para um campo espinorial (spin = ½) massivo, confinado em uma região tridimensional esférica de raio R, e portanto limitada por uma superfície = casca esférica (bidimensaional). Esta é a chamada sacola. Condição de contorno: o campo se anula exatamente na sacola. Método: utilizar coordenadas esféricas usuais (r,θ, φ ) para resolver a equação com o hamiltoniano e a condição de contorno

35 Efeito Casimir: Campo Espinorial em Sacola A energia do sistema consiste de 2 partes: 1) Sistema clássico consistindo de uma superfície esférica (sacola) com raio R, com energia: Onde: V = 4/3 π R 3 é o volume do espaço contido e subjacente à sacola S = 4πR 2 é a superfície da sacola p é a pressão σ é a tensão superficial F, k e h não possuem nomes especiais 2) Campo espinorial φ que obedece à equação de Dirac e as condições de sacola na superfície. O campo quântico tem energia de ponto zero dada por: com s=0. Parâmetros que determinam a energia. Parâmetros livres: k e σ

36 Efeito Casimir: Campo Espinorial em Sacola Energia do sistema para uma escolha específica de renormalização Propriedades: 1)Energia alta (positiva) para raio pequeno 2)Energia negativa para raios intermediários 3)Energia positiva novamente (mas bastante menor) para raios grandes 4)Energia tende a zero no limite R

37 Energia do Vácuo x Λ

38 Motivação A energia do vácuo é um fenômeno quântico que não se importa nem um pouco com a expansão do universo e permanece independente do tempo à medida que o universo se expande ou contrai. (Barbara Ryden, Introduction to Cosmology) Será mesmo?

39 Motivação Uma diferença é fundamental entre a inflação e a atual expansão acelerada: a escala de energia envolvida nos dois processos. Todavia, parece haver uma conexão conceitual entre as duas coisas. A inflação foi um mecanismo que homogeneizou e planificou e limpou o cenário no universo no início dos tempos. Se nada diferente ocorresse após o fim do processo inflacionário, essa faxina teria um tempo de duração limitado. A energia escura parece estar desempenhando esse mesmo papel agora, mantendo a homogeneidade, a planicidade e a isotropia que, possivelmente, não se manteriam indefinidamente após o final do período inflacionário. Assim, as duas coisas parecem estar conceitualmente relacionadas. (Paul Steinhardt)

40 Motivação O dinamismo é a característica que os cosmólogos consideram atraente na quintessência. O maior desafio para qualquer teoria da energia escura é explicar a densidade inferida do universo (...). Para explicar a quantidade de energia escura atual, o valor da constante cosmológica precisaria ter sido perfeitamente ajustado no momento da criação do universo para que tivesse assim o valor apropriado – algo que faz a constante cosmológica parecer um fator arbitrário. Em contraste, a quintessência interage com a matéria e evolui com o tempo, de modo que pode ajustar-se naturalmente para alcançar o valor observado hoje. (Paul Steinhardt) E que tal se a quintessência interagir com a geometria?

41 Um Modelo Dinâmico para Λ Λ dependente de a (fator de escala) de acordo com:

42 Um Modelo Dinâmico para Λ Neste modelo (um toy model), o nosso universo é representado pela sacola em si (um objeto de 2 dimensões). Assim, nosso universo se comporta como uma bolha em expansão em um background com uma dimensão espacial a mais. No caso de um universo tridimensional, o background teria 4 dimensões espaciais. Esse background é habitado por um campo espinorial massivo que se anula perfeitamente no nosso universo.

43 Vantagens do Modelo Explicar a inflação primordial do universo e a atual expansão acelerada através de um mesmo mecanismo. Tal mecanismo é algo bastante palpável (Efeito Casimir): pode ser (e já foi!) medido em laboratório. Apresenta uma previsão testável: a atual expansão acelerada é um fenômeno transiente. O campo responsável pela energia é identicamente nulo em todo o nosso universo. A constante cosmológica não é constante, mas sim uma quantidade dinâmica, o que pode soar menos artificial (ou antrópico): é um modelo quintessencial.

44 Críticas ao Modelo 3) O campo responsável pela energia é identicamente nulo em todo o nosso universo. Sendo assim, não há como medi-lo diretamente! Resposta: Correto. Porém, as implicações da existência de tal campo devem ser suficientes para nos convencer de sua plausibilidade tanto quanto as implicações do modelo inflacionário são capazes de nos convencer da plausibilidade do inflaton. 1) O universo apresentado no modelo tem apenas 2 dimensões! Resposta: Temos que começar em algum ponto! Introduzir uma terceira dimensão não é tão complicado assim e tampouco deve comprometer as propriedades gerais apresentadas. 2) O modelo apela para uma dimensão extra! Resposta: É verdade, mas, mesmo assim, nem tem tantas dimensões ocultas quanto outras teorias disponíveis no mercado...

45 Críticas ao Modelo 4) Mas por que o nosso universo deveria ser o único nesse background com uma dimensão extra? Resposta: Não deveria! A palavra universo foi originalmente concebida para englobar tudo que existe. Porém, novos modelos físicos apontam para a possibilidade de universos bolha, sendo o nosso apenas um entre muitos (ou até infinitos). São as chamadas teorias de multiverso. Outros universos podem ter condições físicas muito diferentes das nossas, e é provável que nunca nosso universo tenha contato com os outros. Um pensamento para exercitar a humildade: Nós não apenas ocupamos uma posição desprivilegiada em nosso universo como podemos também estar em um universo desprivilegiado no multiverso!

46 O conceito de Multiverso tem suas raízes na moderna Cosmologia e na Teoria Quântica e engloba várias idéias da Teoria da Relatividade de modo que pode ser possível a existência de inúmeros Universos onde todas as probabilidades quânticas de eventos ocorrem. Simplesmente há espaço suficiente para acoplar outros Universos numa estrutura dimensional maior: o chamado Multiverso.

47

48 There are more things in Heaven and Earth, Horatio, Than are dreamt of in your philosophy. Hamlet, Ato I, Cena V

49 Bibliografia Básica 1)Cosmologia básica: Barbara Ryden, Introduction to Cosmology, Addison Wesley (2003) 2) Quase tudo sobre a constante cosmológica: Carroll & Press: Annu. Ver. Astron. Astrophys : ) Quase tudo sobre Efeito Casimir: K. Milton. The Casimir Effect: Physical Manifestations of Zero Point Energy. arXiv:hep-th/ v1 Bordag, Mohideen, Mostepanenko. New Developments in the Casimir Effect. arXiv:quant-ph/ v1 4) Efeito Casimir em geometrias esféricas: Cognola, Elizalde, Kirsten. Casimir Energies for Spherically Symmetric Cavities. arXiv:hep-th/ v2 Elizalde, Bordag, Kirsten. Casimir energy in the MIT bag model. arXiv:hep-th/ v1


Carregar ppt "O Efeito Casimir e a Constante Cosmológica Rafael Bán Jacobsen Horacio Dottori (orientador) IF - UFRGS."

Apresentações semelhantes


Anúncios Google