A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Energia e potência em sistemas hidráulicos Hidrodinâmica -Hidrocinética.

Apresentações semelhantes


Apresentação em tema: "Energia e potência em sistemas hidráulicos Hidrodinâmica -Hidrocinética."— Transcrição da apresentação:

1 Energia e potência em sistemas hidráulicos Hidrodinâmica -Hidrocinética

2 Hidrocinética É o estudo das leis dos movimentos dos fluídos e suas efetivas forças. Por meio dela podemos em parte esclarecer as perdas ocorridas na hidrostática.

3 Equação da continuidade A equação da continuidade afirma que o fluxo em linhas de transmissão é constante.

4 Considerando que Q = v A Como se admite que o sistema é incompressível, então: Como potência é definida como força por unidade de tempo introduzida ou retirada do sistema

5 Acionamento hidrostático Considerando que a bomba e o motor são de deslocamento positivo para um giro do eixo do motor temos um certo volume de óleo deslocado (V d ) Considerando que não existe vazamento entre os componentes, então: Como Torque = Força * dist.

6 Como as perdas de pressão no sistema ideal são desprezíveis pode-se dizer que a pressão em 1 é igual a 2 E a potência = Das equações anteriores temos Como a vazão e a pressão são iguais, a Potência é igual

7 Conservação de energia Energia potencial devido a elevação EPE = W*h (N*m) Energia potencial devido a pressão EPP = W*p/ (N*N/m 2* m 3 /N) = (N*m) Energia cinética EC = ½ W/g*v 2 Energia total ET = EPE + EPP + EC = constante

8 Equação de Bernoulli É uma das equações de maior uso na análise de circuitos hidráulicos Pode ser derivada a partir da equação de conservação de energia para linhas de transmissão.

9 Tipo de energia posição 1posição 2 PotencialWZ 1 WZ 2 Pressão W(p 1 /)W(p 2 /) CinéticaWv 1 2 /2gWv 2 2 /2g

10 Dividindo tudo por W dividindo-se pela densidade

11 Corrigindo a equação anterior para levar em conta as perdas Onde H p = energia adicionada ao sistema pela bomba por unidade de fluído H L = perda por fricção H m = energia removida pelo motor Hp(m) =

12 Teorema de Torricelli Afirma que a velocidade de um jato livre é igual a raiz quadrada do produto entre duas vezes a aceleração da gravidade vezes a altura da coluna. Na realidade é um caso especial do equação de Bernoulli.

13 Torricelli

14 Sifão O sifão é similar a um sistema hidráulico

15 Viscosidade e Índice de Viscosidade É a medida da habilidade do fluído de fluir. É a propriedade mais importante.

16 Viscosidade e Índice de Viscosidade Baixa viscosidade o fluido flui fácil Facilmente pode ser rompido o filme de óleo que serve como lubrificante entre as partes móveis Alta viscosidade O fluído não flui bem Aumenta a demanda de potência Maior perda de carga Ideal é um meio termo

17 Viscosidade absoluta Para fluídos newtonianos t = tensão de cisalhamento = viscosidade absoluta do fluído y = espessura v = velocidade da placa

18

19 Unidades da viscosidade No SI 1 N = 10 5 dinas

20 No sistema inglês (microreyn) = 0,145* (cP)

21 Viscosidade cinemática Nos sistema hidráulicos geralmente utilizamos da viscosidade cinemática ao invés da viscosidade absoluta. É definida como a razão entre viscosidade absoluta e a massa específica. massa específica = stoke = s

22 Como determinar a viscosidade Exemplo: SAE 20 a 70 o C = 50 cS Sayobolt Universal Seconds - SUS Viscosímetro Sayobolt

23 Relação entre SUS e o SI para medir a viscosidade cinemática é dada por:

24 Índice de viscosidade É a medida relativa a taxa de alteração da viscosidade do óleo em uma dada faixa de temperatura IV baixo = alta alteração de em função da temperatura. O IV variava originalmente entre 0 e 100

25 Tipos de fluxo - Laminar e turbulento Quando vimos o fluxo de fluídos assumimos que este mantém uma velocidade constante ao longo de uma tubulação.

26 Perfil do fluxo Na realidade o fluído tem velocidade igual a zero junto da parede da tubulação.

27 Existem dois tipos de fluxo Laminar Turbulento

28 Número de Reynolds Se Nre < 2000 laminar Se Nre > 4000 turbulento Se 2000 < Nre < 4000 zona de transição O tipo de fluxo pode ser determinado pelo número de Reynolds

29 Ou número de Reynolds v = velocidade = viscosidade absoluta = densidade mássica = viscosidade cinemática

30 Equação de Darcy Perdas em tubulações Perdas em conexões f = fator de fricção L = comprimento da linha D = diâmetro interno da tubulação v = velocidade g = aceleração da gravidade

31 Perdas por fricção em fluxo laminar O fator de fricção em tubulação com fluxo laminar é calculado pela equação: Equação de Hagen-Poiseuille

32 Perdas por fricção em fluxo turbulento Devido a flutuação randômica das partículas do fluído o fator de fricção não pode ser calculado por uma simples fórmula. Neste caso f não é função somente do N R mas também do rugosidade relativa do tubo. Rugosidade relativa Rugosidade absoluta

33 Diagrama de Moody Utilizado para calcular o fator de fricção. No diagrama não aparecem curvas para 2000 < N R < 4000 pois é impossível prever o comportamento do fluxo nesta região. Pra valores do N R > 4000 cada curva representa um valor particular de /D, para valores intermediários é necessário interpolar. Quando uma completa turbulência é atingida aumentar os valores do N R não afeta f.

34

35

36 Rugosidade absoluta (mm) Vidro ou plásticoLiso Tubos trefilados0,00015 Tubos comerciais de aço 0, ,045 Tubo galvanizado0,10 – 0,15 Ferro fundido0,25 – 1,00

37 Perdas em válvula e conexões Em tubulações hidráulicas as principais perdas de energia ocorrem em válvulas e conexões. Nestes pontos o tipo de fluxo que ocorre é muito complexo. Por este motivo as perdas são geralmente determinadas experimentalmente e tem demonstrado que podem ser representado pela equação:

38 Fator de válvula K Válvula Globo – aberta fechada Válvula gaveta – aberta ¾ ½ ¼ U -2.2 T - padrão1.8 Cotovelo padrão0.9 Cotovelo 45 o 0.42 Válvula de retenção4.0

39 Válvula globo e gaveta

40 ConexõesConexões

41 Casos especiais Em muitas válvula o valor de K não é especificado. Neste caso uma curva de perda de pressão é fornecida pelo fabricante.

42 Perda de pressão x fluxo em uma válvula de controle direcional.

43 Comprimento equivalente A equação de Darcy mostra que a perda de carga é proporcional a velocidade do fluido ao quadrado e ao comprimento da tubulação. Então é possível estabelecer uma relação entre a equação anterior e a equação de Darcy.

44 L equivalente Onde: L e é o comprimento equivalente da válvula ou conexão. Note que K e f são adimensionais

45 Analise de circuitos hidráulicos Exemplo. Para o circuito hidráulico mostrado na figura a seguir Determine a pressão disponível na entrada do motor hidráulico na posição 2. Calcule a perda de carga entre o ponto 1 e 2. Comp. da tubulação do filtro até o cotovelo = 0,3 m do cotovelo até a bomba = 1,25 m da bomba ao motor = 4,9 m Dados – A bomba adiciona 5 hp ao sistema A vazão da bomba é de 30 gpm, O diâmetro interno da tubulação é 1 pol. A densidade específica do óleo é 0,9 A viscosidade cinemática é de 100 cS

46 Medida de fluxo Conhecer o fluxo de óleo é muitas vezes necessário em circuitos hidráulicos para analisar seu desempenho, assim como para determinar problemas. O tipo mais comum é um rotâmetro

47 Medida de fluxo A figura mostra um esquema de uma turbina para medição de fluxo.

48 Medidor de fluxo de óleo Pierburg

49 Medidor de pressão Medidores de pressão são utilizados para: detectar problemas na linha, Teste Ajuste de pressão Determinar a força exercida pelo cilindro Determinar o torque exercido pelo motor

50 Tubo de Bourdon É o tipo mais comum.

51 Schrader

52 Resumo Propriedades dos fluídos hidráulicos Viscosidade Compressibilidade Como transmitir força e potência Aplicação da lei de Pascal Conservação de energia Equação de Bernoulli Potência hidráulica = p x Q Fluxo de óleo e perdas de carga em tubulações


Carregar ppt "Energia e potência em sistemas hidráulicos Hidrodinâmica -Hidrocinética."

Apresentações semelhantes


Anúncios Google