A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

7. INTEGRAÇÃO NUMÉRICA Parte 1 7.1 Introdução 7.2 Fórmulas de Newton-Cotes 7.2.1 Regra dos Trapézios 7.2.2 Regra dos Trapézios Repetida 7.2.3 Regra 1/3.

Apresentações semelhantes


Apresentação em tema: "7. INTEGRAÇÃO NUMÉRICA Parte 1 7.1 Introdução 7.2 Fórmulas de Newton-Cotes 7.2.1 Regra dos Trapézios 7.2.2 Regra dos Trapézios Repetida 7.2.3 Regra 1/3."— Transcrição da apresentação:

1 7. INTEGRAÇÃO NUMÉRICA Parte Introdução 7.2 Fórmulas de Newton-Cotes Regra dos Trapézios Regra dos Trapézios Repetida Regra 1/3 de Simpson Regra 1/3 de Simpson Repetida Regra 3/8 de Simpson (Selma Arenales) Teorema Geral do Erro

2 INTEGRAÇÃO NUMÉRICA 7.1 INTRODUÇÃO Se é uma função contínua em, então existe a função primitiva, tal que Problema 1: Na maioria das vezes pode não ser fácil expressar através das funções ditas elementares. Problema 2: Em alguns casos temos apenas uma tabela de. Como calcular ? Nestes casos calculamos numericamente!!!

3 INTEGRAÇÃO NUMÉRICA 7.1 INTRODUÇÃO Idéia básica. Para calcular numericamente vamos expressar como um polinômio no inter- valo. Deduziremos expressões que têm a forma onde Quando escrevemos uma integral na forma (1), estamos implementando o formalismo de Newton-Cotes.

4 INTEGRAÇÃO NUMÉRICA 7.2 FÓRMULAS DE NEWTON-COTES No procedimento de Newton-Cotes o polinômio aproxima em pontos de, igualmente espaçados. Se os subintervalos têm comprimento, então as fórmulas fechadas de Newton-Cotes para integração têm a forma

5 INTEGRAÇÃO NUMÉRICA 7.2 FÓRMULAS DE NEWTON-COTES Comentário 1: Os coeficientes das formas fechadas de Newton-Cotes são determinados de acordo como grau do polinômio aproximador de. Comentário 2: As formas abertas de Newton-Cotes, construídas de forma análoga às fechadas, diferem pelo fato que

6 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS Utilizando a Forma de Lagrange para expressar, que interpola em obtemos:

7 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS Note que é a área do trapézio de altura e de base.

8 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS Ao substituir a área sob a curva pela área do trapézio estamos realizando uma aproxima- ção e cometendo um erro. Verifica-se que este erro é dado por

9 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS REPETIDA Quando o intervalo é grande, devemos fazer várias subdivisões e aplicar a regra do trapézio repetidas vezes. Sendo

10 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS REPETIDA O erro cometido em aplicar vezes a regra do trapézio é Graficamente

11 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS REPETIDA Exemplo1: Considere a integral a) Calcule uma aproximação para a integral utilizando 10 subintervalos e a regra do trapézio repetida. Estime o erro cometido. b) Qual é o número mínimo de subdivisões, de modo que o erro seja inferior a.

12 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS REPETIDA Solucão. a) Fazendo 10 subintervalo no intervalo temos e. Aplicando a regra do trapézio repetida, Estimativa do erro:

13 INTEGRAÇÃO NUMÉRICA REGRA DOS TRAPÉZIOS REPETIDA Solucão. b) Para obter erro de temos que Como subintervalos.

14 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON Utilizando a Forma de Lagrange para expres- sar, que interpola nos pontos, segue que

15 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON ou ainda Regra 1/3 de Simpson

16 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON De modo análogo à Regra do Trapézio, na Re- gra 1/3 de Simpson estamos realizando uma aproximação e cometendo um erro. Verifica-se que este erro é dado por Note o ganho no erro ao passar da aproximação linear para a quadrática

17 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON REPETIDA Novamente, quando o intervalo é grande, a solução é fazer várias subdivisões e aplicar a regra 1/3 de Simpson repetidas vezes. Sendo aplicando Simpson 1/3 em um subintervalo:

18 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON REPETIDA Considerando todos subintervalos onde Agora temos m/2 subintervalos

19 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON REPETIDA Exemplo1: Considere a integral a) Calcule uma aproximação para a integral utilizando 10 subintervalos e a regra 1/3 de Simpson repetida. Estime o erro cometido. b) Qual é o número mínimo de subdivisões, de modo que o erro.

20 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON REPETIDA Solucão. a) Fazendo 10 subintervalo no intervalo temos e. Aplicando a regra do trapézio repetida, Estimativa do erro:

21 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON REPETIDA Solucão. b) Para obter um erro inferior a Como subintervalos. Note a convergência rápida da regra 1/3 de Simpson

22 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON X TRAPÉZIO 1. A convergência da regra 1/3 de Simpson é mais rápida do que a convergência da regra do Trapézio. 2. As demais fórmulas fechadas de integração de Newton-Cotes trabalham com polinômios de graus n=3, n=4, Para um n qualquer, a fórmula de Newton – Cotes é apresentada no próximo slide.

23 INTEGRAÇÃO NUMÉRICA REGRA 1/3 DE SIMPSON X TRAPÉZIO Fórmula de Newton-Cotes para n qualquer

24 INTEGRAÇÃO NUMÉRICA REGRA 3/8 DE SIMPSON Utilizando a Forma de Lagrange para expressar, que interpola nos pontos: segue que

25 INTEGRAÇÃO NUMÉRICA REGRA 3/8 DE SIMPSON REPETIDA Integrando Regra 3/8 de Simpson

26 INTEGRAÇÃO NUMÉRICA REGRA 3/8 DE SIMPSON REPETIDA Considerando todos subintervalos Enfim, o erro cometido pela regra 3/8 de Simpson é Neste caso temos m/3 subintervalos

27 INTEGRAÇÃO NUMÉRICA TEOREMA GERAL DO ERRO O erro na integração numérica, utilizando fórmu- las de Newton-Cotes, é caso 1: Caso 2:


Carregar ppt "7. INTEGRAÇÃO NUMÉRICA Parte 1 7.1 Introdução 7.2 Fórmulas de Newton-Cotes 7.2.1 Regra dos Trapézios 7.2.2 Regra dos Trapézios Repetida 7.2.3 Regra 1/3."

Apresentações semelhantes


Anúncios Google