A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Introdução às Medidas em Física 4300152 5 a Aula Isis Vasconcelos de Brito Lab. De Óptica e Sistemas Amorfos IFUSP- Ala I, Sala 103.

Apresentações semelhantes


Apresentação em tema: "Introdução às Medidas em Física 4300152 5 a Aula Isis Vasconcelos de Brito Lab. De Óptica e Sistemas Amorfos IFUSP- Ala I, Sala 103."— Transcrição da apresentação:

1 Introdução às Medidas em Física a Aula Isis Vasconcelos de Brito Lab. De Óptica e Sistemas Amorfos IFUSP- Ala I, Sala 103

2 Experiência III: Distância Focal de uma Lente Objetivos: Medidas indiretas Medida da distância focal de uma lente Noções de Estatística: Propagação de Incertezas Média Ponderada Compatibilidade

3 Como avaliar incerteza Tipos de incerteza Instrumental Aquela associada à precisão do instrumento utilizado para realizar a medida direta de uma grandeza Estatística Incerteza associada à flutuação no resultado de uma mesma medida Sistemática Aquela onde a medida é desviada em uma única direção, tornando os resultados viciados

4 Uma medida obtida de outra medida tem incerteza? O volume do cubo tem uma incerteza? A incerteza de uma medida (neste caso, a incerteza na aresta do cubo) se propaga para as medidas obtidas da mesma (o volume do cubo). L - L L + L L

5 Propagação de incerteza E combinamos as duas incertezas com uma soma quadrática. Fazemos isso pois assumimos que a incerteza devido ao diâmetro é independente da incerteza devido à altura: V 2 = ( V devido a D ) 2 + ( V devido a h ) 2 D h

6 Calculando

7 Regra geral Para uma função f (x,y,z,t....) x ± s x y ± s y z ± s z t ± s t

8 Como comparar os resultados de duas medidas? É preciso se levar em consideração sempre a incerteza de medida Como devemos considerar a incerteza, nos perguntamos se as medidas são compatíveis ao invés de iguais Por exemplo, 2,74 0,02 mm é compatível com 2,80 0,05 mm ? 2,702,752,802,85

9 Critério para compatibilidade Superposição em 1 = compatíveis Superposição em 2 ou 3 Compatíveis com menor probabilidade Teste Z indica essa probabilidade Comparação entre (a ± a ) e (b ± b ) Z 1, compatíveis ao nível de 1 1 Z 2, compatíveis ao nível de 2 2 Z 3, compatíveis ao nível de 3 Z > 3, discrepantes

10 Análise dos dados Como cada medida tem incerteza diferente, podemos fazer uma média ponderada: onde: e a incerteza de d é:

11 Distância Focal de uma Lente É a distância entre o ponto de foco de uma imagem e a lente caso o objeto que gera a imagem esteja a uma distância infinita da lente

12 Lentes convergentes e divergentes Convergente Divergente

13 Curiosidade: olho humano e visão A imagem formada sobre a retina é real e invertida. Problemas de visão ocorrem quando a imagem não se forma sobre a retina

14 Curiosidade: correção dos problemas de visão (a)Hipermetropia: a imagem se forma após a retina; a correção é feita utilizando lentes convergentes. (b) Miopia: a imagem se forma antes da retina; a correção é feita utilizando lentes divergentes.

15 Formação da imagem Raios luminosos saem de todos os pontos do objeto em todas as direções Qualquer raio luminoso paralelo ao eixo principal da lente é desviado de tal forma a passar pelo ponto focal da lente; Qualquer raio luminoso incidente sobre o centro da lente não sofre desvio

16 Distância Focal de uma Lente Ela pode ser calculada pela expressão (Eq. De Gauss): Eixo objeto Eixo imagem

17 Dist objeto > distância focal Convergente f > 0 Divergente f < 0 Objeto real o > 0 Eixo imagem Imagem virtual i < 0 Raios parecem vir do mesmo ponto Imagem real i > 0 Raios se encontram

18 Dist objeto < distância focal Convergente f > 0 Divergente f < 0 Objeto real o > 0 Eixo imagem Imagem virtual i < 0 Raios parecem vir do mesmo ponto Imagem virtual i < 0 Raios parecem vir do mesmo ponto

19 Imagem em lente convergente: o > f Conforme S (objeto) afasta, I (imagem) diminui e se aproxima de F Imagem é real (cruzamento de raios reais) Imagem é invertida

20 Imagem em lente convergente: o < f Imagem é: Virtual (cruzamento de prolongamentos dos raios) Direita e maior que o objeto

21 Procedimento Experimental Bancada óptica: Trilho metálico Fonte luminosa 2 lentes a serem estudadas Anteparo para projeção da imagem Identificar a lente convergente e a lente divergente Estimar a distância focal dessas lentes (+ incerteza) Convergente Pode ser usado imagem real ou virtual Divergente Imagem virtual

22 Estimativa de f Para objeto real o > 0 Convergente: f > 0 i > 0 se o > f (real) i < 0 se o < f (virtual) i = se o = f (imprópria) Divergente f < 0 i > 0 sempre (virtual)

23 Procedimento Experimental I Determinar a distância focal de uma lente convergente simples: Para a lente convergente, cada aluno do grupo fará 10 medidas, com diferentes valores de o; Organizar os dados em uma tabela; Refletir sobre as incertezas nas medidas, tanto de o como de i ; Como você pode estimá-las? A incerteza é somente devido ao equipamento de leitura (trena), ou seja, instrumental?

24 Procedimento Experimental II Determinar a distância focal de uma lente divergente simples: Como a lente é divergente (f<0), não há imagem real produzida; Deve-se construir um sistema óptico de duas lentes: A imagem da lente divergente serve de objeto para a lente convergente. Pode-se calcular o foco da lente divergente sabendo o foco da lente convergente

25 Procedimento Experimental II Determinar a distância focal de uma lente divergente simples Usar a bancada óptica Montar o sistema de lentes, usando a lente convergente da parte anterior. Por tentativa e erro, escolher qual a melhor separação entre as lentes, observando quão fácil é focalizar a imagem para o objeto.

26 Análise dos dados Calcular a distância focal da lente convergente utilizada (usar equação de Gauss), não esquecendo de fazer a propagação de incertezas; Calcular a distância focal para a lente divergente; Calcule a média ponderada (para lente convergente) e compare os valores da distância focal obtidos em cada medida. Você observa alguma tendência nos dados com o aumento ou diminuição de o ?

27 Relatório para próxima aula Descrição Experimental Resultados Tabelas com dados primários: distância o, distância i, incertezas, número da lente, valores de f obtidos com a eq. De Gauss e suas incertezas; Média Ponderada e incerteza (lente convergente); Cálculo de f para lente divergente; Compatibilidade entre resultados: - teórico e calculado pela média pond. (eq. de Gauss) Discussão e Conclusão Comparação dos resultados obtidos por cada tipo de lente e com o valor teórico.


Carregar ppt "Introdução às Medidas em Física 4300152 5 a Aula Isis Vasconcelos de Brito Lab. De Óptica e Sistemas Amorfos IFUSP- Ala I, Sala 103."

Apresentações semelhantes


Anúncios Google