A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

CÁLCULOS FINANCEIROS 2ª aula. Método de avaliação Um trabalho, que será entregue aos alunos no dia 27/10 e deverá entregue, com as respectivas respostas,

Apresentações semelhantes


Apresentação em tema: "CÁLCULOS FINANCEIROS 2ª aula. Método de avaliação Um trabalho, que será entregue aos alunos no dia 27/10 e deverá entregue, com as respectivas respostas,"— Transcrição da apresentação:

1 CÁLCULOS FINANCEIROS 2ª aula

2 Método de avaliação Um trabalho, que será entregue aos alunos no dia 27/10 e deverá entregue, com as respectivas respostas, ao professor no dia 10/11/11 ?, data da prova final. Nota final = (T+P)/2 Lista de presença: Preferencialmente ao final da aula.

3 COMO INSTRUMENTO AUXILIAR EM NOSSOS CÁLCULOS, UTILIZAREMOS PREFERÊNCIALMENTE A CALCULADORA FINANCEIRA HP12-C

4 Relembrando: REGRA DE OURO DA MATEMÁTICA FINANCEIRA Régua de tempo ou régua de fluxo financeiro. Representa o dinheiro no tempo e considera as entradas e saídas de recursos.

5 FLUXOS FINANCEIROS Entendendo o que é um fluxo financeiro. O dinheiro no tempo: entrada intervalo de tempo momento momenton saída

6 FLUXOS FINANCEIROS Ponto de vista do investidor: 120 momento m 100 Ponto de vista do banco: 100 momento m 120

7 FLUXOS FINANCEIROS Outras possibilidades de fluxos: momento momento n PREVIDÊNCIA POR PRAZO CERTO! Ou mesmo: EMPRÉSTIMO! momento momento n

8 JUROS Taxa percentual que é aplicada sobre um determinado valor, após um determinado tempo, acrescentando mais valor a ele ou subtraindo no caso de desconto. j /100 = 0,20 ou 20% Uma taxa de juro de 20% ao mês pode ser expressa tanto por 20%a.m. quanto por 0,05 a.m.. i

9 Acrescentando juro a um valor. MONTANTE Ao se acrescentar 1 (um) a um percentual estamos na verdade agregando o principal (ou valor principal). j 100 Ex: ((20/100)+1)=1,2, neste caso ao se multiplicar um valor por 1,2 estaremos acrescentando 20% +1 Principal + i

10 CONCEITOS IMPORTANTES NOMENCLATURAS MAIS UTILIZADAS C : Capital J : juro (expresso em valor) e j = Taxa % i : taxa de juro (forma percentual) M : Montante Dessa forma teremos: M = C + J e J = C. i onde J indica o juro obtido no período a que se refere a taxa. Dessa forma podemos perceber que: i = - 1 M C

11 USANDO A HP12-C FUNÇÕES BÁSICAS 1 Ligar a HP12C = ON - Aparece o número zero com duas casas decimais, podendo o mesmo ser apresentado nos sistemas brasileiro ou americano. Caso aparece algum valor é porque eles não foram apagados na última utilização da calculadora. Desligar a HP12C = ON - A calculadora também se desliga sozinha após 6 minutos de não utilização. Escolher o sistema de numeração = ON. – Pressionar ao mesmo tempo, soltando primeiro a tecla ON e depois a tecla. (ponto). Entrada de números = 69 (69,00 ou 69.00) A apresentação, depende da representação escolhida. Corrigir o número digitado = CLX – Apaga o valor no visor. Entrada de números em sequência = 77,02 guardado na memória X ENTER guardado na memória Y 269,50 guardado na memória X. Para verificar os números que estão nas memórias X ou Y = X>

12 USANDO A HP12-C FUNÇÕES BÁSICAS 2 Armazenar o valor numa memória fixa = STO 1 – Podemos utilizar o teclado numérico de 1 a 9 para armazenar números. Para limpar todas as memórias que estão sendo utilizadas f CLX. Se a calculadora for desligada sem que sejam apagadas as memórias, os números permanecerão guardados. Lembrando que a tecla CLX apaga somente o numero que esta no visor. Resgatando números que estão armazenados = RCL 1 ou onde ele esteja armazenado no teclado numérico. Lembrando que, ao se resgatar um número que esta na memória este aparece na memória X e também continua na memória fixa, ou seja, resgatar um número da memória não exclui este da mesma. Obter a parte fracionária do número no visor = g FRAC Obter a parte inteira do número no visor = g INTG Eliminar demais casas decimais do número no visor = f RND (ex: 50/7), ver com todas as casas, fixar com duas casas decimais usar o f RND, aumentar novamente o número de casas para checar.

13 USANDO A HP12-C FUNÇÕES BÁSICAS 3 Obter um percentual de um número que esta no visor = 1712,36 ENTER 10 %, no visor aparecerá 171,24 (com duas casas decimais). Obter a variação/diferença percentual entre dois números = Δ% Percentual total de um número sobre outro = %T – ex: 120 ENTER 100 %T = 83,33% ou 100/120 = 0,8333. Trocando o sinal do número na memória X = CHS Recuperando o último valor armazenado em X, após o uso de teclas +, -, x, etc. = g LSTx Extrair a raiz quadrada do número na memória X = g x Extrair a raiz n do número na memória X = 1/x Y - Radiciação Elevando um número a uma potência = Y - Exponênciação x x

14 USANDO A HP12-C FUNÇÕES BÁSICAS 4 Cálculo com datas: a)Número de dias entre duas datas, exemplo de 11/11/2010 a 09/12/2010 digitamos ENTER g ΔDYS, resultado: 28 dias. b)Data após decorridos um determinado número de dias, exemplo 360 dias a contar de 09/11/2010 digitamos ENTER 360 g DATE, resultado: dia 04 de novembro de Obs.: Os mesmos passos valem para se obter datas passadas, neste caso basta entrar com o número de dias no formato negativo (-360). c)Para se saber o dia da semana de uma data específica, exemplo: qual o dia da semana da data 22 de dezembro de 2012 ? digitamos ENTER 0 g DATE, resposta: 6, que para calculadora HP12C equivale ao sábado, pois o dia 1 equivale a segunda-feira. VOCÊ SABE EM QUE DIA DA SEMANA VOCÊ NASCEU?

15 USANDO A HP12-C FUNÇÕES BÁSICAS 5 n = Número de parcelas de um fluxo; i = taxa (ex: 2% digita-se com 2 na tecla i); PV = Valor Presente de um fluxo; (Present Value) PMT = Parcelas ou pagamentos; (Payments) FV = Valor futuro de um fluxo; (Future Value) -Calcular o valor das parcelas dado: i =1,77, n =12, PV =R$ ,00 -Calcular o valor futuro dado: i=1,77, n =12, PV=R$ ,00 -Calcular o valor futuro: Aplicação de R$136,914,49 à taxa de 1,77%am por 12 meses. -Calcular: O valor presente ou valor de uma aplicação, onde eu recebi após 12 meses o montante de R$ ,00, sabendo-se que a taxa de aplicação foi de 1,77%am. -Calcular: Eu apliquei R$ e após 12 meses recebi R$ , qual a taxa mensal de remuneração desta aplicação?

16 USANDO A HP12-C FUNÇÕES BÁSICAS 5a n = Número de parcelas de um fluxo; i = taxa (ex: 2% digita-se com 2 na tecla i); PV = Valor Presente de um fluxo; (Present Value) PMT = Parcelas ou pagamentos; (Payments) FV = Valor futuro de um fluxo; (Future Value) - Quantos meses são necessários para se obter R$ ,00, aplicando-se R$1.000,00 por mês, obtendo-se uma remuneração média de 0,56%am? - Quero comprar um carro e o vendedor da concessionária me disse que a taxa (para mim que sou Brother disse ele!) é de 1,07%am. Vou financiar R$40.000,00 em 36 meses, sem entrada, e ele me disse que a prestação vai ficar em R$1.396,03. O vendedor esta me informando a taxa correta? (Explicar as funções: g end e o g begin)

17 ENTENDENDO O CÁLCULO DE PRESTAÇÔES Fórmula algébrica para cálculo de prestações (Tabela Price): P=C.((i.(1+i)^n))/(((1+i)^n)-1)) Testando o último exemplo da página anterior: P= ((0,0129.((1+0,0129)^36))/(((1+0,0129)^36)-1)) P= ((0,0129.((1,0129)^36))/(((1,0129)^36)-1)) P= ((0,0129.(1,586341))/((1,586341)-1)) P= ((0,020464)/(0,586341)) P= (0,034901) P= ?

18 MAIS IMPORTANTE DO QUE SABER GANHAR DINHEIRO, É SABER O QUE FAZER COM ELE DEPOIS! Prof. RENE

19 Acrescentando juro a um valor. MONTANTE Ao se acrescentar 1 (um) a um percentual estamos na verdade agregando o principal (ou valor principal). j 100 Ex: ((20/100)+1)=1,2, neste caso ao se multiplicar um valor por 1,2 estaremos acrescentando 20% +1 Principal + i

20 CONCEITOS IMPORTANTES NOMENCLATURAS MAIS UTILIZADAS C : Capital J : juro (expresso em valor) e j = Taxa % i : taxa de juro (forma percentual) M : Montante Dessa forma teremos: M = C + J e J = C. i onde J indica o juro obtido no período a que se refere a taxa. Dessa forma podemos perceber que: i = - 1 M C

21 Exemplos: 1) Um capital de R$ 1.000,00 é aplicado durante um mês, à taxa de 11% a.m. a)Obtenha o juro no período. b)Obtenha o montante. Temos: 11% = 11/100 = 0,11. a)J = ,11 = 110 b)M = = ) Um capital de R$ ,00 é aplicado durante um ano, à taxa de 30%a.a. a)Obtenha o juro no período. b)Obtenha o montante. Temos: 30% = 30/100 = 0,30. a)J = ,3 = b)M = =

22 Exemplos: 3) Um capital de R$ ,00 foi aplicado durante 3 meses, produzindo um montante de R$14.640,00. Qual a taxa trimestral de juros? Temos: i = - 1 = i = / – 1 = 0,22 = 22%a.t. M C

23 Exemplos da aula anterior: 1) Um capital de R$ 1.000,00 é aplicado durante um mês, à taxa de 11% a.m. a)Obtenha o juro no período. b)Obtenha o montante. Temos: 11% = 11/100 = 0,11. a)J = ,11 = 110 b)M = = ) Um capital de R$ ,00 é aplicado durante um ano, à taxa de 30%a.a. a)Obtenha o juro no período. b)Obtenha o montante. Temos: 30% = 30/100 = 0,30. a)J = ,3 = b)M = =

24 + Exemplos: 3) Um capital de R$ ,00 foi aplicado durante 3 meses, produzindo um montante de R$14.640,00. Qual a taxa trimestral de juros? Temos: i = - 1 = i = / – 1 = 0,22 = 22%a.t. 4) Um capital de R$ ,00 é aplicado durante um mês, à taxa de 7,5% a.m. a)Obtenha o juro no período. b)Obtenha o montante. M C

25 + Exemplos: 5) Emprestei R$2.000,00 a um amigo, porém vou cobrar dele o mesmo que costumo obter em minhas aplicações, 1%am, ele ficou de me pagar ao final de 6 meses. Se ele for me pagar, quanto devo receber daqui a seis meses? 6) Pretendo comprar um carro que custa R$45.000,00, tenho R$15.000,00 para dar de entrada. O banco, que vai me financiar em 60 meses, esta querendo me cobrar uma taxa mensal de 1,47%a.m.. Qual será o valor da parcelas?

26 HP-12C ALGÉBRICA (Prazo m) ALGÉBRICA (TX m) ,2% ,7% ,9% ,331,2719% ,33 1,2719 MÉDIA PONDERADA Utilizando as teclas Σ+ e Σ-

27 FÓRMULA PARA PONDERAÇÃO COMPOSTA: Onde: V= valor, P= prazo, i=taxa Para cálculo do prazo médio = Σ (V.P)/ Σ (V) Para cálculo da taxa média = Σ (V.P.i)/ Σ (V.P)

28 HP-12C (Prazo m) HP-12C (Tx m) ENTER ENTER 30 SOMATÓRIO + 30 X 500 ENTER 1,2 SOMATÓRIO + 45 SOMATÓRIO ENTER 300 ENTER 45 X 67 SOMATÓRIO + 1,7 SOMATÓRIO + RCL 6 = ENTER RCL 4 = X DIVIDE = 40,33 0,9 SOMATÓRIO + RCL 6 = RCL 4 = DIVIDE = 1,2719

29 Outro caminho para média ponderada: Método 1 Método 2 HP-12C (Prazo m) ENTER 30 SOMATÓRIO ENTER 45 SOMATÓRIO ENTER 67 SOMATÓRIO + RCL 6 = RCL 4 = DIVIDE = 40,33 HP-12C (Prazo m) ENTER 30 SOMATÓRIO ENTER 45 SOMATÓRIO ENTER 67 SOMATÓRIO + RCL 6 = RCL 4 = DIVIDE = 40,33 HP-12C (Prazo m) 30 ENTER SOMATÓRIO + 45 ENTER 500 SOMATÓRIO + 67 ENTER 300 SOMATÓRIO + g Xw = 40,33

30 MÉDIA PONDERADA HP-12C ALGÉBRICA (Prazo m) ALGÉBRICA (TX m) ,2% ,7% ,9% ,331,2719% ,33 1,2719 Ponderação composta com itens negativos! ou seja, precisamos retirar de um somatório um determinado item. Retirar do total o segundo registro.(500x45x1,7) Ponderar novamente, agora sem o segundo registro.

31 + CONCEITOS IMPORTANTES O QUE É CAPITALIZAÇÃO – É um processo onde, como o nome já diz: se capitaliza, se agrega, se soma, se incorpora. Processo de incorporação dos juros ao capital após um determinado período. Pode ocorrer pelos regimes de juros SIMPLES ou de juros COMPOSTOS, porém com diferenças.

32 JUROS SIMPLES Se incorporam ao principal, porém não incidem sobre os juros de períodos anteriores. Exemplo: R$100,00 por 3 meses a 2%am. 1º mês = R$100,00 x 0,02 = R$2,00 2º mês = R$100,00 x 0,02 = R$2,00 3º mês = R$100,00 x 0,02 = R$2,00 Ao final do terceiro mês temos um total de: R$100,00 + R$6,00 = R$106,00.

33 JUROS COMPOSTOS Se incorporam ao principal e incidem sobre os juros de períodos anteriores. Exemplo: R$100,00 por 3 meses a 2%am. 1º mês = R$100,00 x 0,02 = R$2,00 2º mês = R$102,00 x 0,02 = R$2,04 3º mês = R$104,04 x 0,02 = R$2,08 Ao final do terceiro mês temos um total de: R$100,00 + R$6,12 = R$106,12.

34 TAXA DE JUROS EFETIVA E NOMINAL Taxa de juros efetiva é aquela na qual a unidade de tempo de referência coincide com a unidade de tempo de ocorrência da capitalização (dos juros). Exemplo: 12% ao ano é apresentado como 12%a.a., em vez de 12%a.a. capitalizados anualmente. Em contrapartida, taxa de juros nominal é aquela para a qual a unidade de tempo de referência é diferente da unidade de tempo relativa à ocorrência da capitalização. Assim sendo, a taxa de 12% ao ano capitalizados mensalmente é apresentada como 12%a.a. nominais mensais.

35 TAXA DE JUROS EQUIVALENTES Os juros equivalentes são taxas iguais, porém expressas para períodos de tempo diferentes. Exemplo: No regime de capitalização composta podemos dizer que 12% a.a. é equivalente à taxa de 0,9489%a.m. Exemplo: Uma taxa de 22,28%a.a quanto equivale ao mês?

36 MAIS IMPORTANTE DO QUE SABER GANHAR DINHEIRO, É SABER O QUE FAZER COM ELE DEPOIS! Prof. RENE


Carregar ppt "CÁLCULOS FINANCEIROS 2ª aula. Método de avaliação Um trabalho, que será entregue aos alunos no dia 27/10 e deverá entregue, com as respectivas respostas,"

Apresentações semelhantes


Anúncios Google