A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2013/2014.

Apresentações semelhantes


Apresentação em tema: "1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2013/2014."— Transcrição da apresentação:

1 1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2013/2014

2 2 1ª Aula

3 3 Risco e sua diversificação

4 4 Introdução Quando alguém empresta um capital, tem como objectivo receber mais tarde esse capital que emprestou acrescido dos juros Mas existe sempre uma probabilidade de não receber nem uma coisa nem outra (no todo ou em parte).

5 5 Introdução Na análise de um investimento, porque é baseada em previsões quanto ao desempenho futuro do negócio –preços dos inputs, preços e quantidades dos outputs, depreciação do capital, falhas e descobertas tecnológicas A medida calculada a priori na avaliação pode, a posteriori, vir a concretizar-se de forma menos favorável.

6 6 Introdução No sentido de compreendermos o risco, controlá-lo e utilizá-lo na tomada de decisão, vamos neste capítulo apresentar a modelização estatística do risco.

7 7 Introdução Já consideramos um modelo de risco p => Prob. de não receber nada (1-p) => Prob. de receber capital e juros V.(1+r) = 0 x p + V.(1+i).(1-p) i = (1+r) / (1-p) -1 r => taxa de juro sem risco i => taxa de juro com risco

8 8 Seguro de vida Ex.2.1- Num seguro de vida em que é paga a indemnização na data da morte. A seguradora capitaliza os prémios pagos pelo segurado de forma a ter reservas para pagar a indemnização. A seguradora tem uma margem de 10% Qual o prémio anual por cada 1000 de indemnização?

9 9 Seguro de vida Se a seguradora soubesse a priori quantos anos faltavam para o segurado morrer e a taxa de juro, calculava facilmente o prémio do seguro que lhe permitiria capitalizar a indemnização e ter algum lucro Mas na data de assinatura do contrato essas grandezas não são conhecidas

10 10 Seguro de vida Se a duração fosse N e a taxa de juro r tínhamos Valor actual da indemnização Valor actual da soma de todos os prémios (prestações) pagos pelo segurado (antec.)

11 11 Seguro de vida Igualando obtemos o prémio que a seguradora precisa cobrar (sem margem)

12 12 Exemplo: seguro de vida Se N=40 e r = 2% resultava: –Paga 40 anualidades Mais os 10%, seriam /ano/1000 = %/ano

13 13 Exemplo: seguro de vida O seguro tem risco porque a seguradora não conhece N nem r =>O risco pode resultar de um fenómeno aleatório, e.g., o euromilhões. => Mas o mais normal é resultar de uma concretização futura, e.g., a ocorrência de uma inovação tecnológica

14 14 Exemplo: seguro de vida Sem conhecermos N nem r o melhor que pode ser feito é a construção de alguns cenários Dividimos cada variável em cenários Como exemplo, consideramos os cenários Adverso, Médio, favorável M.Mau, Mau, Médio, Bom, M.Bom M.Mau, Mau, Médio-, Médio+, Bom, M.Bom

15 15 Exemplo: seguro de vida Cada cenário é uma combinação de valores possíveis para as variáveis relevantes desconhecidas No caso de variáveis contínuas, esse valor é o representante de um intervalo, e.g., o valor do meio.

16 16 Seguro de vida

17 17 Exemplo: seguro de vida Seguradora cobrar /ano por cada seguro de 1000, terá prejuizo nos cenários Mau e Mmau e uma margem maior que 10% nos cenários Bom e Mbom.

18 18 Exemplo: seguro de vida Também podemos usar uma combinação de cenários individuais. Se temos 5 cenários para a taxa de juro e 6 para a longevidade, da combinação resultam 30 cenários Cobrando um prémio anual de 17.86, podemos identificar os cenários em que a seguradora tem prejuizo e lucro

19 19 Exemplo: seguro de vida F5: =$C$1*$E6/((1-(1+$E6)^-F$5)*(1+$E6)^(F$5+1))*(1+$C$2) Área F6:K10 com formatação condicionada (se <17.854)

20 20 Introdução Os cenários conseguem dar uma ideia dos potenciais perdas e ganhos mas não nos ajudam quantitativamente na decisão Vamos necessitar de alguns conceitos estatísticos que permitam agregar a informação.

21 21 Conceitos estatísticos básicos

22 22 Conceitos estatísticos básicos A Estatística descreve, organiza e relaciona objectos e fenómenos demasiado difíceis de apreender com as ferramentas conceptuais da matemática clássica (i.e., funções reais de variáveis reais).

23 23 Conceitos estatísticos básicos A estatística reduz a dimensão do fenómeno considerando Poucas variáveis (as mais relevantes) e Conhecimento parcial dessas variáveis

24 24 Conceitos estatísticos básicos Por exemplo, quando se constrói um avião, é necessário colocar bancos adequados para acomodar Pessoas com Necessidades Especiais (PNE). –Cada lugar implica um custo –Mas deixar passageiros em terra tem uma penalização Eu não sei quantas pessoas aparecem em cada voo.

25 25 Conceitos estatísticos básicos Dados passado: Olhando para as pessoas que viajaram no passado, 3.0% são PNE.

26 26 Conceitos estatísticos básicos Partindo desta informação pouco pormenorizada –Calculada com os passageiros do passado podemos calcular, com a ajuda da estatística, estimativas para as necessidades das viagens futuras –Supomos a estabilidade das características da população

27 27 Conceitos estatísticos básicos Sabendo-se que 3% dos indivíduos são PNE, em x% das viagens futuras (com 200 passageiros) haverá necessidade de N lugares – Função distribuição de Poisson

28 28 Conceitos estatísticos básicos Agora, podemos optimizar uma função objectivo. H1) cada lugar especial dá 50 de prejuizo H2) Deixar um PNE em terra tem 1000 de penalização Podemos minimizar o prejuizo esperado

29 29 Conceitos estatísticos básicos A variável de decisão é N. x é o número de PNE que aparecem num voo qualquer n é o número de cadeiras especiais do avião

30 30 Conceitos estatísticos básicos

31 31 Conceitos estatísticos básicos Para já não interessa saber como a figura anterior foi calculada. Com os 3% de PNE, foi possível construir um modelo de apoio à decisão. O valor óptimo depende da percentagem de PNE (estimativa) 2.0% => 11 lugares 3.0% => 14 lugares 4.0% => 17 lugares

32 32 Noção de variável estatística

33 33 Noção de variável estatística Na primeira parte da disciplina aprendemos modelos que nos permitem quantificar o impacto da nossa decisão em função das variáveis relevantes (e.g., taxa de juro, taxa de crescimento as vendas) O risco resulta de não conhecermos os valores concretos que as variáveis vão assumir no futuro.

34 34 Noção de variável estatística Por exemplo, na construção de um automóvel não sei a altura nem o peso do futuro condutor. –Será um valor sorteado da população Vou ultrapassar a falta de informação assumindo que será um valor retirado aleatoriamente da população da qual conheço estatísticas –e.g., o valor médio e a dispersão

35 35 Noção de variável estatística Numa extracção aleatória os indivíduos são obtidos sem ter em atenção nenhuma das suas características –e.g., a extracção de uma bola no Euromilhões não tem em atenção o número. Depois, agrego a população numa função objectivo a optimizar –Valor esperado do lucro ponderado pelo risco

36 36 Probabilidade A cada um dos valores possíveis (i.e., cada cenário) é atribuído uma probabilidade -> Atirando uma moeda ao ar, a probabilidade de sair cara é 50%. -> Retirar o número 33 de um saco com os números 1 a 50 é 1/50. -> A probabilidade de nascer uma rapariga é 49.03% (INE, Jan2013:Jul2013).

37 37 Interpretações de probabilidade Probabilidade de se concretizar o valor x Clássica: é a proporção de vezes em que observo o valor x se repetir a experiência de forma independente e muitas vezes Bayesiana: é uma conjectura construída por peritos sobre o fenómeno ainda desconhecido se concretizar com o valor x Em termos práticos, a perspectiva bayesiana é mais flexível mas não tem tanto suporte teórico

38 38 Probabilidade A probabilidade não garante qual o valor que se vai obter no concreto e.g., sabe-se que a probabilidade de numa viagem haver 6 PNE é de 16% não diz que vão aparecer 6 pessoas mas contém um certo grau de informação que ajuda a avaliar a importância relativa dos cenários construídos

39 39 Probabilidade Opinião de peritos: Ex.2.4. Foram identificados 8 cenários possíveis quanto ao comportamento do preço do Brent em dólares daqui a 10 anos e inquirida a opinião de 100 peritos sobre a probabilidade de se concretizarem (proporcional à escala de 0 a 10).

40 40 Probabilidade Com base na soma dos pontos atribuídos por todas as pessoas, determine a probabilidade assumida para que cada um dos cenários possa vir a acontecer.

41 41 B5: =B4/$J4 J4: =Soma(B4:I4)

42 42 2ª Aula

43 43 Concluindo, 1 - Eu tenho um modelo de cálculo das implicações financeiras da minha decisão onde me falta a informação sobre o cenário concreto que se vai realizar

44 44 Tenho o modelo que funciona bem quando conheço os valores

45 45 2 – Quando não tenho os valores, o melhor que posso fazer é substituir o valor desconhecido por uma variável aleatória de que eu tenho informação quanto à probabilidade de cada cenário se vir a concretizar. Por exemplo, não conheço a duração

46 46 Substituo o valor desconhecido por uma variável aleatória

47 47 Uso uma variável aleatória como modelo do risco Esta substituição (do cenário futuro desconhecido pela variável aleatória) implica que tenha como resultado não um valor mas também uma variável aleatória (como se fosse toda uma população de resultados).

48 48 Exemplo Ex.2.5. Conhecida a probabilidade de o individuo durar determinados anos e a taxa de juro ser determinada retome o Ex.2.1 e calcule a probabilidade da seguradora ter uma margem das vendas abaixo dos 10% pretendidos

49 49 Caracterização da v.e. População dividida em cenários –Intervalos Pego nos indivíduos todos da população e calculo a proporção que cai dentro de cada classe e.g., divido a longevidade de uma pessoa nos intervalos [0, 30]; ]30,60]; ]60,90] e ]90, 120]

50 50 Caracterização da v.e. Não podendo medir toda a população, utilizo uma amostra no cálculo da probabilidade Quando (parte) da população está no futuro, tenho que considerar o presente como uma amostra dessa população do futuro

51 51 Exemplo a probabilidade de cada cenário é determinada com informação passada e pela opinião de um painel de peritos Vamos supor a seguinte informação quanto à probabildaide de ocorrencia de cada cenário:

52 52

53 53 Exemplo R. Agora que tenho informação quanto à probabilidade de cada um dos cenários poder ocorrer, olhando para o resultado de cada cenário (apresentado no Ex. 2.1) somo a probabilidade dos cenários em que o prémio deveria ser maior que o adoptado (1.785%/ano) –São os cenários a vermelho A probabilidade da margem das vendas ficar abaixo dos 10% pretendidos é 57.78%.

54 54 Exemplo: seguro de vida F5: =$C$1*$E6/((1-(1+$E6)^-F$5)*(1+$E6)^(F$5+1))*(1+$C$2) Área F6:K10 com formatação condicionada (se <17.854)

55 55 Tabelas de sobrevivência As seguradoras têm tabelas que dão a probabilidade de uma pessoa estar viva decorridos x anos desde que nasceu. Quantificado em partes por Por exemplo, o INE estima que a probabilidade de um individuo nascido em 2007 estar vivo em 2040 é 98439/100000

56 56 Tabela de sobrevivência

57 57 Tabelas de sobrevivência A probabilidade de uma pessoa de 20 anos durar apenas 10 anos é de ( )/99267 = 0.586%

58 58 Exercício Ex.2.6. Uma empresa contrata um financiamento de 10M com 3 anos de diferimento e amortizado nos restantes 7 anos, pagamentos trimestrais postecipados. TAE é a EURIBOR mais 2.5 p.p. Usando um quadro de probabilidades conhecido, determine P(prest>500k)

59 59 D6: =(A6+B6)/2; E6: =D6+E$1; F6: =(1+E6)^(1/4)-1 G6: =B$3*F6/(1-(1+F6)^-E$2); E3=Soma(C12:C18)

60 60 Exercício Ex.2.7. Uma família adquire um imóvel a crédito –> 150k a 40 anos –> Prestação mensal iguais em termos reais –> Antecipada Quero saber o esforço financeiro –> Prestação/Rendimento

61 61 Exercício Vamos fazer a análise a preços constantes e calcular a prestação anual paga no meio do ano da renda cujo valor actual é 150k: –que evita saber a taxa de inflação

62 62 Exercício Podíamos fazer mensal Mas a ideia é visualizar a simplificação de considerar o pagamento a meio do período.

63 63 Exercício Eu não sei qual vai ser a taxa de juro real nem o rendimento futuros. Vou assumir cenários e probabildiades para cada cenário.

64 64 Dados

65 65 J5: =$B$1*$D5/(1-(1+$D5)^-$B$2)/(1+$D5)^0,5/E$4 O5: =IF(J5>$P$2;E5;0)P3: =SUM(O5:S9)

66 66 Valor médio Na tomada de decisão é conveniente agregar todos os cenários em apenas algumas medidas. Em termos económicos, o valor esperado (médio) é a medida que contém mais informação é a componente sem risco do fenómeno que estamos a analisar.

67 67 Valor médio Havendo n cenários caracterizado cada um por x n, com determinada probabilidade de ocorrência, p n, o valor médio será –Porque as probabilidades somam 1

68 68 Valor médio O valor médio já nos permite um critério quantitativo que nos ajuda a decidir numa situação com risco. Mas é muito limitado porque não tem em atenção o risco (a variabilidade)

69 69 Ex.2.8. Um empresa fornece refeições a aviões. Que confecciona durante a noite para responder às solicitações do dia seguinte que são incertas. Por cada refeição que fornecer recebe 15 (com um custo de produção de 5) e tem uma penalização de 15 por cada refeição que seja pedida e não possa ser fornecida. As refeições que sobram são destruídas no fim do dia.

70 70 i) Determine, em média, a rentabilidade do fornecimento em função do número de refeições confeccionadas. ii) Determine o número de refeições que maximiza a rentabilidade média.

71 71 A empresa constrói cenários em que a variável desconhecida é o número de refeições encomendadas Calcula, para cada dia e com base na sua experiência, a probabilidade de cada um dos cenários se verificar. Com essas probabilidades, a empresa determina o resultado médio do dia em função do número de refeições confeccionadas (que é a variável de decisão).

72 72 E6: =MÍNIMO(C6;$D$1)F6: =C6-E6 G6: =E6*E$4-D$1*D$2+F6*F$4 H6: =D6*G6H15: =SOMA(H6:H14)

73 73 Alterando o valor da variável de decisão, D1, determino qual o número de refeições que maximiza o resultado médio, H15

74 74 Optimização O Excel tem a ferramenta Solver que permite maximizar ou minimizar o resultado de um modelo. No Excel 2007: Office Button+ Excel Options + Add-ins category +no Manage clickar em Go…, +Solver Add In Depois, aparece no Analysis

75 75 3ª Aula

76 76 Desvio padrão Ao agregarmos os cenários no valor médio ficamos sem uma medida de risco o desvio padrão,, é uma boa medida do risco de assumirmos o valor médio dos cenários possíveis como o valor do cenário que vai acontecer (e que é desconhecido)

77 77 Desvio padrão Algebricamente é a raiz quadrada da Média dos desvios ao quadrado

78 78 Desvio padrão Como a soma de todas as probabilidades dá 1

79 79 Desvio padrão O desvio padrão é uma expressão derivável e que tem interpretação geométrica. –Se, e.g., uma população se agrega no valor médio 25/dia e desvio padrão 5/dia, é equivalente a ter metade dos indivíduos em 20/dia e outra metade em 30/dia.

80 80 Desvio padrão Ex Uma empresa pretende internacionalizar-se e traçou vários cenários possíveis Determine o valor médio e o desvio padrão do resultado financeiro que resulta da internacionalização.

81 81 D2: =$B2*C2D10: =SUM(D2:D9) E2: =(C2-$D$10)^2F2: =$B2*E2 F10: =SUM(D2:D9) F11: =F10^0,5

82 82 Desvio padrão Podemos ler este resultado como: Em média o resultado será 28.3k mas em metade dos casos o resultado será 4.3k = 28.3 – e na outra metade será 52.3k =

83 83 Ex Supondo que nos baralhos de 52 cartas uma figura vale 10 pontos. Determine o valor médio e o desvio padrão dos pontos de uma carta retirada aleatoriamente. Nesta população teórica eu posso calcular os valores da população

84 84 4 cartas valem 1 ponto, 4 cartas valem 2 pontos …. 4 cartas valem 9 pontos 16 cartas valem 10 pontos

85 85 O desvio padrão será

86 86 Ex Relativamente ao Ex. 2.8, determine o desvio padrão dos resultados. Determine o número de refeições que maximiza o valor médio do resultado menos o seu desvio padrão. –As pessoas preferem não infrentar risco pelo que, quando ele existe, é preciso retirar alguma coisa ao valor médio

87 87 I6: =(G6-$H$15)^2J6: =I6*D6 J15: =SOMA(J6:J14)J16: =J15^0,5

88 88 Função de distribuição Quando a variável é contínua podemos partir o domínio em intervalos, cenários, e apontar uma probabilidade de o acontecimento vir a pertencer a cada um dos cenários. Em cada cenário adoptamos como valor representativo o meio do intervalo

89 89 Função de distribuição Apesar de atribuirmos uma probabildaide a cada cenário –Se temos 30 cenários, precisamos de 29 números Mas não existe informação para ter rigor nesses números. Temos informação para 1 ou 2 números

90 90 Função de distribuição É aceitável pensar que os cenários vizinhos têm associadas probabilidade semelhantes. A Estatística propõe o uso de uma função F(x) que quantifica a probabilidade de ser observado um valor menor que ou igual a dado valor x.

91 91 Função de distribuição A função de distribuição é caracterizada por alguns parâmetros No ex.2.1 usei a Função Distribuição de Poisson que se caracteriza por 1 parâmetro (os 3%) Valor médio = Desvio Padrão

92 92 Distribuição Normal É caracterizada por dois parâmetros –O valor médio –O desvio padrão (ou a variância) Variância = desvio padrão ao quadrado É importante porque é a distribuição limite da soma de acontecimentos estatisticamente pouco dependentes

93 93 Distribuição Normal A probabilidade de acontecer o cenário ] – ; + ] é de 68.3% 2/3; ] – 2 ; +2 ] é de 95.5% 19/20 ] – 3 ; +3 ] é de 99.7% 997/1000.

94 94 Distribuição Normal Ex. o QI -coeficiente de inteligência é uma variável aleatória com distribuição normal com média 100 e desvio padrão 15 A probabilidade de encontrar aleatoriamente um indivíduo com QI > 145 é 0.13% (i.e., uma em cada 740 pessoas) =1-DIST.NORM(145;100;15;VERDADEIRO) Inglês: NORMDIST

95 95 Distribuição Normal A Distribuição Normal concentra a maior probabilidade nos cenários em torno do valor médio

96 96 Exercício Ex Comprei obrigações a 25 anos à taxa de juro nominal fixa de 3%/ano, sem possibilidade de mobilização antecipada. A taxa de inflação média prevê-se seguir distribuição N(0.02, 0.01)/ano Determine o valor real a receber no fim do prazo de aplicar e a probabilidade de esse valor ser menor que a quantia aplicada.

97 97 Exercício 1) Vou dividir o domínio da taxa de inflação em cenários e calcular o valor capitalizado para cada cenário 2) Calculo o valor médio e o desvio padrão do V.F. em termos reais e a probabilidade de vir a ser recebido uma quantia menor que a aplicada.

98 98 Exercício

99 99 A7: =G1-4,25*G2B7: =A7+$G$2/2A8: =B7D7: =(A7+B7)/2 C7: =DIST.NORM(B7;G$1;G$2;true)-DIST.NORM(A7;G$1;G$2;true) E7: =(1+C$1)/(1+D7)-1F7: =C$2*(1+E7)^C$3 G7: =F7*C7 H7: =(F7-G$25) I7: =H7^2*C7C24: =SOMA(C7:C23)G25: =SOMA(G7:G22)/C24 I24: =SOMA(I7:I22)/C24I25: =I24^0,5 I26: =DIST.NORM(C2;G25;I25;true)

100 100 4ª Aula

101 101 Distribuição Uniforme Na F.D. Uniforme os valores no domínio são todos igualmente prováveis. Pode se caracterizada pelos extremos –valores mínimo e máximo Pelo valor médio e amplitude Pelo valor médio e desvio padrão

102 102 Distribuição Uniforme Sendo dados = valor médio = desvio padrão O Valor mínimo = O Valor máximo =

103 103 Distribuição Uniforme Sendo dados Mx = valor máximo Mn = valor mínimo Valor médio = (Mn + Mx)/2 Desv. padrão = (Mx - Mn)

104 104 Distribuição Uniforme A probabilidade de um cenário é a sua proporção no domínio possível. Ex., com a distribuição uniforme U(Min,Mx) = U(5; 10) A probabilidade do cenário [5;6] é 1/5

105 105 Escolha da F.Distribuição A função distribuição não é conhecida sendo uma proposta da Teoria. No entanto, em termos de decisão económica, a função distribuição não é um factor crítico (ver ex.2.13). e.g., considerar uma função distribuição normal é idêntico a considerar uma função de distribuição uniforme.

106 106 Distribuição não simétrica No entanto, quando o fenómeno é caracterizado por uma função muito assimétrica, –Existe uma probabilidade mais elevada de alguns acontecimentos catastróficos –Mede-se com –m é zero nas F.D. simétricas não posso utilizar uma função simétrica

107 107 Distribuição não simétrica Exemplo de uma distribuição assimétrica é o caudal de um rio É normal ter –m / > 5 –80% dos dias um caudal ao valor médio –1 dia em cada 100 anos haver um caudal 30 vezes superior ao caudal médio

108 108 Distribuição não simétrica Os caudais muito elevados (e.g., que ocorrem com a probabilidade de 1 dia em 100 anos) têm muito poder destrutivo Os seguros contra danos de cheias têm que quantificar com rigor a probabilidade destes acontecimentos extremos –As barragens e pontes têm que ser feitos de forma a resistir a estes caudais extremos.

109 109 Distribuição não simétrica O caudal médio do rio Douro no Porto é 714m 3 /s A ponte de Entre-os-Rios caiu com o caudal no Porto de ~13500m 3 /s –A maior cheia conhecida no Porto ocorreu em 23 de Dezembro de 1909 (e 6 Dez. de 1739) com >20000m 3 /s –A barragem de Lever-Crestuma está dimensionada para 26000m 3 /s

110 110 Ribeira, 1962/01/03 10:00, ~17000m 3 /s, 1909 foi > em 68cm

111 111 Operações algébricas com uma variável aleatória

112 112 Operações algébricas simples Se somarmos uma constante a uma variável aleatória –O valor médio vem aumentado –O desvio padrão mantêm-se

113 113 Operações algébricas simples Ex. A altura das pessoas é N(1.75, 0.15) Supondo-as em cima de uma cadeira com 0.5m, a altura total será N(2.25, 0.15)

114 114 Operações algébricas simples

115 115 Operações algébricas simples

116 116 Operações algébricas simples Se multiplicarmos uma constante por uma variável aleatória –O valor médio vem multiplicado –O desvio padrão vem multiplicado pelo valor absoluto da constante

117 117 Operações algébricas simples

118 118 Operações algébricas simples

119 119 Operações algébricas simples Ex Um marceneiro tem 1000/mês de despesas fixas e tem de margem das vendas, em média, 15 por cada móvel que produz. Supondo que projecta produzir este mês 100 móveis, qual será a sua remuneração em termos médios? R. Atendendo às propriedades, teremos 100 – 1000 = – 1000 = 500

120 120 Ex.2.15 Um empresário está a avaliar o aluguer de um barco de pesca pelo qual paga 3mil/dia. Demora um dia de viagem para cada lado e pesca, durante 5 dias, 2500kg/dia O preço de venda segue distribuição N(2,1)/kg Quanto será o lucro? Qual a probabilidade de ter prejuízo?

121 121 Ex.2.15 O lucro será N(2; 1) – =12500 N(2; 1) – = N(25000; 12500) – = N(4000; 12500) Em média 4mil com desvio padrão de 12.5mil A probabilidade de ter prejuízo será 37.45%, =NORMDIST(0;4000;12500;TRUE).

122 122 Exercício Compro os legumes a 0.50/kg, pago 75 pelo transporte e o preço de venda é desconhecido tendo distribuição N(0.60; 0.15)/kg. i) Determine qual vai ser o meu lucro de intermediar 1000kg de legumes. ii) Determine a probabilidade de eu ter prejuízo.

123 123 Exercício i) Lucro = V.(Pvenda – Pcompra) – Ctransporte = 1000[N(0.60, 0.15) – 0.50] – 75 Lucro = N(600, 0.15x1000) – 575 = N(25, 150) ii) No Excel teríamos A1: =Dist.Norm(0; 25; 150; Verdadeiro) 43.38%

124 124 Exercício Ex O empresário A fez uma descoberta que lhe permite desenvolver um negócio cujo q de Tobin é N(1.5, 0.25) e onde é necessário investir 1M. Sendo que o empresário A vendeu ao empresário B metade do negócio por 625k, qual será o q de Tobin de A e de B?

125 125 Exercício R. A investe 375k que terá B investe 625k que terá

126 126 Acções - obrigações O Ex.2.16 ilustra porque é vantajoso o empreendedor emitir acções da sua empresa. Uma acção é uma parte do capital próprio da empresa tendo, em termos contabilísticos, um certo valor nominal, normalmente 1.

127 127 5ª Aula

128 128 Acções - obrigações Por exemplo, uma empresa com um capital social de 10M divide-se em 10M de acções com valor nominal de 1 cada. A acção dá direitos de voto na condução dos destinos da empresa e é remunerada com uma parte dos lucros, o dividendo, que é incerto.

129 129 Acções - obrigações As acções têm maior risco que as obrigações porque, em caso de insolvência, os activos da empresa pagam primeiro as obrigações e apenas o que sobrar (i.e., nada) é que é dividido pelas acções. Além disso, no contrato de emissão o resultado das obrigações é conhecido (o cupão e o valor de remissão) enquanto que o lucro da empresa é variável.

130 130 Acções - obrigações Interessa ao empresário dispersar o capital da empresa porque, normalmente, a empresa emite as acções, numa operação denominada por OPV (mercado primário), a um preço superior ao valor contabilístico. As acções são depois transaccionadas entre investidores (mercado secundário) sendo o seu preço, denominado por cotação, determinado pela expectativa que os agentes económicos têm da evolução futura do negócio (i.e., dos dividendos e da cotação).

131 131 Operações algébricas não simples Se quisermos calcular um prémio de um seguro de vida em que a duração do individuo é uma variável aleatória, as operações algébrica não são simples:

132 132 Operações algébricas não simples Cálculo expedito. Sendo que temos y = g(x), obtemos um valor aproximado da distribuição usando os dois pontos notáveis x 1 = - e x 2 = + Calculamos y 1 = g( - ) e y 2 = g( + ) Valor médio = (y 1 + y 2 )/2 Desv. padrão = |y 2 - y 1 |/2

133 133 Operações algébricas não simples Nas distribuições simétrica é indiferente usar Valor médio = (g( - ) + g( + ))/2 g( ) Nas distribuições assimétricas é melhor usar Valor médio = (g( - ) + g( + ))/2

134 134 Exercício Ex O prémio de um seguro de vida com r = 2%/ano, L ~ N(50, 10) i) Determine qual devem ser as reservas Y/1000 de forma a ter Y = (P) + (P). ii) Se a seguradora propõe um prémio antecipado de 15/ano por 1000 seguros, qual será o seu lucro?

135 135 Exercício P(40) = 16.23/ano; P(60) = 8.60/ano. a seguradora precisará reservas com média ( )/2 = 12.42/ano e desvio padrão ( )/2 = 3.82/ano aconselhando a prudência a que as reservas sejam = 16.23/ano.

136 136 Exercício P(40) = 16.23/ano; P(60) = 8.60/ano. Lucro(40) = 15–16.23 = –1.23/ano; Lucro (60) = 15–8.60 = 6.40/ano. Para uma longevidade genérica, o lucro do seguro terá valor médio = (– )/2 = 2.59/ano desvio padrão = ( )/2 = 3.82/ano.

137 137 Operações algébricas não simples Divisão em cenários. Já utilizamos esta abordagem (ex ex.2.11). Divide-se o domínio da variável em cenários sendo conveniente utilizar a folha de cálculo. Ao considerarmos intervalos mais pequenos, estamos a diminuir o erro de cálculo.

138 138 Operações algébricas não simples

139 139 Operações algébricas não simples C7: =NORMDIST(B7;C$2;C$3;TRUE)- NORMDIST(A7;C$2;C$3;TRUE) D7: =(A7+B7)/2+0,5 E7: =F$1-H$1*F$2/(1-(1+F$2)^-D7)/(1+F$2)^(D7+1) F7: =C7*E7 G7: =E7-F$40 H7: =G7^2*C7 C39: =SUM(C7:C38) F40: =SUM(F7:F38)/$C39 H39: =SUM(H7:H38)/$C39 H40: =H39^0,5

140 140 Método de Monte Carlo Método de Monte Carlo. 1) Sorteamos vários valores para a variável de acordo com a sua função distribuição. 2) Aplica-se o modelo aos dados e determina- se uma população de resultados possíveis. Calcula-se o valor médio, o desvio padrão, faz- se um histograma, etc., dos resultados. Tools + Data Analyses + Random Number Generation **

141 141 Método de Monte Carlo **Excel 2007 Instalamos o Data Analyses Office Button + Excel Options + Add Ins + Excel Add Ins Go… Depois, aparece em Data o Data Analysis

142 142 Método de Monte Carlo

143 143 Método de Monte Carlo 2.69

144 144 Método de Monte Carlo Quando derem o R, verão que o Método de Monte Carlo é de simples implementação É muito flexível e poderoso Permite determinar o erro de cálculo

145 145 Comparação dos métodos O método expedito, por usar apenas dois pontos notáveis, será o de menor grau de confiança A divisão em cenários está dependente do detalhe dos cenários O método de monte carlo está dependente do número de elementos extraídos

146 146 Comparação dos métodos No caso do Ex.2.17

147 147 Diversificação do risco

148 148 Diversificação do risco O modelo estatístico ajuda a decidir num problema com risco Podemos diminuir o risco juntando actividades – diversificando Em termos estatísticos, são operações de soma de variáveis aleatórias.

149 149 Diversificação do risco Em termos económicos trata-se de construir uma carteira de activos Não pôr os ovos todos no mesmo cesto Uma concretização negativa de um activo será estatisticamente compensada por uma concretização positiva de outro activo

150 150 Diversificação do risco Por exemplo, na praia podemos vender gelados e gabardines. Quando faz calor, a venda de gabardines dá prejuízo e a de gelados dá lucro Quando chove, a venda de gabardines dá lucro e a de gelados dá prejuízo Vender de ambos diminui o risco

151 151 Diversificação do risco Faz CalorChove Gelados Gabardines Total do negócio +100

152 152 Duas variáveis Divisão das variáveis em cenários –Probabilidades cruzadas Já utilizamos no ex.2.5 O método é semelhante à situação em que temos uma variável estatística, mas agora serão cenários que envolvem a concretização de vários contingências.

153 153 Exercício Ex Um pescador precisa decidir se vai pescar ou não. Não sabe a quantidade que vai pescar nem o preço a que vai vender. A intuição permite-lhe construir cenários e atribuir-lhes probabilidades. De, em simultâneo, se verificar uma quantidade pescada (em kg) e um preço (em /kg).

154 154 Exercício Pesca \ preço[1; 2]/k]2; 3]/k]3; 4]/k [0; 100]kg0%4%10% [100; 250]kg1%35%15% ]250; 400]kg5%10% ]400; 500]kg9%1%0%

155 155 Exercício O pescador pode agora calcular a receita (em termos médios e desvio padrão) multiplicando a quantidade (do meio do intervalo) pelo preço (do meio do intervalo) e decidir ir pescar se, e.g., a receita média menos o desvio padrão for maior que os custos fixos

156 156 Exercício

157 157 Exercício B8: =$A2*B$1 F2: =B8*B2 H6: =SUM(F2:H5) F8: =(B8-$H$6)^2*B2 H12: =SUM(F8:H11) H13: =H12^0,5

158 Decisão Depende agora dos custos fixos necessários para poder pescar. Se fossem, por exemplo, 500 ficaria Lucro médio = 61,50 Des.Pa.lucro = 270,76 Se a função objectivo fosse LM-DP = , não ia pescar por ser <0. 158

159 159 6ª Aula

160 160 Exercício Ex Uma empresa com 1000 trabalhadores pretende contratar um seguro de trabalho que dura 5 anos O seguro, em caso de morte, paga 60 meses de salário à viúva. Quanto deve ser o prémio mensal, antecipado?

161 161 Exercício R. Temos 3 variáveis desconhecidas, a taxa de juro, a longevidade e o salário Vamos supor que a seguradora assumiu 45 cenários, calculou as probabilidades de cada um e construiu um modelo no Excel. Assume-se que a probabilidade de nos 5 anos o trabalhador morrer é 0,140%

162 162 Exercício

163 163 Exercício

164 164 Exercício K3: =I3*$O$2*H3/(1-(1+H3)^-G3)/(1+H3) L3: =K3*J3 M3: =(K3-$L$52)^2*J3 L51: =SOMA(L3:L49) M50: =SOMA(M3:M49) M51: =M50^0,5

165 165 Exercício As reservas médias são de 4.91 pelo que a seguradora tem lucro médio positivo com um prémio baixo, 6/mês Mas, este negócio tem um risco tão elevado (d.p.=166.85/mês) para a seguradora que é inviável. Apenas será possível se a seguradora conseguir diversificar este seguro. –Segurar os 1000 trabalhadores?

166 166 Associação entre variáveis - FD No caso de termos duas variáveis aleatórias, além da F. Distribuição e dos parâmetros (valor médio e desvio padrão) que caracterizam cada uma das variáveis, haverá um parâmetro para quantificar o grau de associação estatística entre as variáveis.

167 167 Associação entre variáveis - FD Por exemplo, nas calças são importantes a largura da cintura e a altura de perna do cliente que, na hora de fabrico, são desconhecidas. Mas, num cliente aleatório, em média, quanto maior for a sua cintura, maior será a sua altura de perna. As calças de número maior são mais compridas

168 168 Associação entre variáveis -FD Covariância: é um parâmetro que condensa a associação entre duas variáveis estatísticas.

169 169 Associação entre variáveis t1A covariância pode ser negativa, zero ou positiva. É crescente com os desvios padrão das variáveis A variância é um caso particular da covariância

170 170 Associação entre variáveis Coeficiente de correlação linear de Pearson, (x, y) Retira à covariância o efeito dos desvios padrão

171 171 Associação entre variáveis Coeficiente de correlação linear está no intervalo [–1; 1] Se for zero, as variáveis não estão associadas (linearmente). Se for –1 ou 1, estão perfeitamente associados em sentido contrário ou no mesmo sentido, respectivamente.

172 172 Associação entre variáveis Propriedades da covariância e do coeficiente de correlação linear i) A covariância (e o coeficiente de correlação linear) entre duas constantes ou entre uma variável e uma constante é zero (a, b) = 0; (a,X) = 0

173 173 Associação entre variáveis ii) Somando uma constante a uma das variáveis, a covariância e o coeficiente de correlação linear mantêm-se: (a+X,Y) = (X,Y); (a+X,Y) = (X,Y)

174 174 Associação entre variáveis iii) Multiplicando uma das variáveis por uma constante, a covariância vem multiplicada e o coeficiente de correlação linear mantém-se (a menos do sinal e de ser zero): (a.X,Y) = a. (X,Y); (a.X,Y) = sig(a). (X,Y)

175 175 Associação entre variáveis iv) A covariância e o coeficiente de correlação são comutativos: (X,Y) = (Y,X); (X,Y) = (Y,X)

176 176 Exercício X~N(10;5), Y~N(-1;3), (X; Y) = 0.7 Determine a) (3X; 2Y) e (3X;2Y) b) (-X; 2Y) e (-X;2Y) c) (5-5X;-2-Y) e (5-5X;-2-Y)

177 177 Exercício (X; Y) = 0.7*5*3 = 10.5 a) (3X; 2Y)=3*2*10.5 = 63, (3X;2Y)=0.7 b) (-X; 2Y)= -1*2*10.5 = -21, (-X;2Y)=-0.7 c) (5-5X;-2-Y) = -5*-1*10.5 = 52.5, (5-5X;-2-Y) = -1*-1*0.7=0.7

178 178 Soma de variáveis estatísticas diversificação do risco

179 179 Soma de variáveis estatísticas Até agora apenas somamos constantes com variáveis É muito relevante no contexto da M.F. porque modeliza o comportamento estatístico das carteiras de activos partindo-se das propriedades individuais dos activos que a constituem.

180 180 Soma de variáveis estatísticas Distribuição da soma de duas V.A. Se as variáveis tiverem distribuição normal, então a soma também terá distribuição normal. Se não tiverem, a soma será mais próxima da distribuição normal que as distribuições das parcelas. A soma de + 30 variáveis aleatórias com distribuição desconhecida que sejam pouco correlacionadas, pode assumir-se que tem distribuição normal.

181 181 Soma de variáveis estatísticas Média da soma. Sendo que existem duas variáveis, X e Y, a soma Z = X + Y terá como valor médio a soma dos valores médios de cada variável estatística.

182 182 Soma de variáveis estatísticas Variância e desvio padrão da soma. Sendo que existem duas variáveis, X e Y, a soma Z = X + Y terá como variância a soma das variâncias de cada variável mais duas vezes a covariância.

183 183 Exercício t2 Ex Um intermediário de legumes, quando encomenda desconhece o preço de aquisição e de venda dos legumes PC ~ N(0.50/kg, 0.10/kg). PV ~ N(0.60/kg, 0.15/kg). Tem que pagar 75 pelo transporte. A correlação linear entre o preço de compra e de venda é de 0.5 i) Determine qual vai ser o lucro de intermediar 1000kg de legumes. ii) Determine a probabilidade de ter prejuízo.

184 184 Exercício Trata-se de operações algébricas com variáveis aleatórias. Lucro = 1000(PV – PC) –75. PV – PC = N(0.60, 0.15) – N(0.50, 0.10) = N(0.10, ( (– 0.5) )) = N(0.10, ) Troca o sinal da correlação porque está a subtrair = *(-1)

185 185 Exercício 1000 N(0.10, 0.132) = N(100, 132.3) N(100, 132.3) –75 = N(25, 132.3) No Excel, =NORMDIST(0; 25; 132.3;TRUE) Tem 42.5% de probabilidade de ter prejuízo

186 186 Exercício Ex Duas acções, com rentabilidades X ~ N(5%; 5%)/ano e Y ~ N(10%, 7%)/ano e com correlação linear de Determine a rentabilidade de uma carteira com a proporção 0.5 de X e 0.5 de Y.

187 187 Exercício Z = 0.5X+0.5Y (Z) = (0.5X)+ (0.5Y) = 0.5 (X)+ 0.5 (Y) = 0.5x5%+ 0.5x10% = 7.5%/ano

188 188 Exercício Z = 0.5X + 0.5Y 2 (Z) = 2 (0.5X) + 2 (0.5X, 0.5Y) + 2 (0.5Y) = (0.5x5%) 2 + 2x0.25x(0.5x5%)x(0.5x7%) + (0.5x7%) 2 =0, (Z) = 4.78%

189 189 7ª Aula

190 190 Extensão à soma de N variáveis Se eu somar três variáveis, posso fazer X+(Y+Z) E retiro que 2 (X+Y+Z) = = 2 (X)+ 2 (Y)+ 2 (Z) + 2 (X,Y)+2 (X,Z) +2 (Y,Z) Facilmente estendo para N

191 191 Extensão à soma de N variáveis Ex Uma empresa pretende lançar o seu produto em novos mercados. Moscovo tem custo Cm N(3, 0.5) e resultado actualizado das vendas Vm N(7, 1) São Petersburgo tem custo Csp N(2, 0.6) e resultado actualizado das vendas Vsp N(6, 2). O lucro resulta de subtrair os custos ao resultado actualizado das vendas,

192 192 Extensão à soma de N variáveis Os coeficiente de correlação linear são CmCspVmVsp Cm Csp Vm Vsp

193 193 Extensão à soma de N variáveis i) Determine o lucro da representação de Moscovo e de São Petersburgo (separadas). ii) Determine o lucro de abertura das duas representações (em conjunto).

194 194 Extensão à soma de N variáveis i) Lucro da representação (separadas). Lm = Vm – Cm = N(7; 1) – N(3; 0.5) = N(4, ( (-0.5) )) = N(4, 0.866) Lsp = Vsp–Csp = N(6; 2) – N(2; 0.6) = N(4, ( (-0.5) )) = N(4, 1.778)

195 195 Extensão à soma de N variáveis i) Lucro das representações juntas. Lm = Vm – Cm + Vsp–Csp = N(7; 1) – N(3; 0.5) + N(6; 2) – N(2; 0.6) = N(8, ( )) = N(8, 2.59) Para simplificar, só tenho 3 correlações diferentes de zero.

196 196 Exercício Ex Um seguro de trabalho cobra um prémio de 6/ano e obriga a seguradora a constituir como reservas F(4.91; )/ano. i) Supondo que os acidentes não estão correlacionados, determine o lucro por trabalhador de segurar 1, 100 trabalhadores e 1000trabalhadores.

197 197 Exercício L 1 = P-R = 6- F(4.91; ) = F(1.09; )/ano L 100 /100 = (L 1 +L 1 + … + L 1 )/100 = = N(109; (100* ))/100 = N(1.09;16,67) /ano L 1000 /100 = (L 1 +L 1 + … + L 1 )/1000 = = N(1090; (1000* ))/1000 = N(1.09;5,27) /ano

198 198 Exercício ii) Supondo que quando há um acidente é provável que morra mais que um trabalhador. Assim, recalcule o lucro por trabalhador com a correlação entre as fatalidades assumida como 0.1

199 199 Exercício

200 200 Exercício Quanto menos correlacionados estiverem os acontecimentos e maior número de acontecimentos misturarmos, maior será a diminuição do risco e mais a função distribuição resultante se aproxima da função distribuição normal.

201 201 Exercício Ex O Seguro de Invalidez, ex.2.21, obriga a F(7.27, )/mês de reservas por cada 500/mês de indemnização. O prémio será o valor médio das reservas mais o desvio padrão. Supondo que a invalidez dos trabalhadores não está correlacionada, determine o prémio em função do tamanho da carteira de seguros.

202 202 Exercício n = 100 P = 42.44/mês; n = 1000 P = 18.39/mês; n = P = 10.79/mês.

203 203 Diversificação do risco e avaliação de projectos A diversificação do risco pode tornar aceitáveis investimentos que avaliados de forma independente não seriam rentáveis (e.g., terem um VAL negativo). Isso acontece quando o investimento tem uma correlação negativa com outros investimentos o que permite diminuir o risco do conjunto dos investimentos.

204 204 Diversificação do risco e avaliação de projectos Ex Uma investidora tem a possibilidade de adquirir uma participação 1. C. de golfe com q =N(1.2; 0.2) 2. Emp. agrícola com q = N(0.9; 0.45). Dá prejuízo A correlação entre os negócios é de –0.9 Qual a proporção do investimento que minimiza a probabilidade de ter prejuízo.

205 205 Exercício D2: =DIST.NORM(1; B2; C2; VERDADEIRO) E3: =1-E2 C5: =(E2*C2)^2+2*C2*E2*C3*E3*C4+(C3*E3)^2 B6: =E2*B2+E3*B3C6: =C5^0,5

206 206 Diversificação do risco e avaliação de projectos Fiz um modelo no Excel e utilizei o solver para minimizar o risco. Contra a lógica da análise individual, aplicando 27% do investimento na empresa não rentável e com risco elevado o meu risco de ter prejuízo diminui de 18.87% para 3.22%. Reparar nas duas restrições do solver.

207 207 Alavancagem Em termos patrimoniais, uma empresa pode ser dividida num conjunto de destinos financeiros (os activos da empresa que têm determinada rentabilidade e podem ser recuperados) e um conjugo de origens financeiras (os passivos da empresa que têm que ser remunerados e devolvidos).

208 208 Alavancagem Em termos contabilísticos, o valor de cada unidade de participação (i.e., cada acção ou cota) será a soma dos activos menos a soma dos passivos alheios (o capital alheio) a dividir pelo número de acções ou cotas que representam a empresa.

209 209 Alavancagem

210 210 Alavancagem A diversificação do risco trata da gestão do risco na parte do activo (e.g., das aplicações financeiras) A alavancagem trata da gestão do risco na parte do passivo (i.e., das origens dos recursos financeiros). –A proporção entre capitais próprios e alheios.

211 211 Alavancagem Os capitais próprios têm voto na condução da empresa enquanto que os capitais alheios não. Em tese, as obrigações não têm risco porque, na liquidação, são pagas antes dos capitais próprios Se a proporção de capitais próprios for pequena, as obrigações vêm o risco aumentado, exigindo o mercado uma taxa de juro maior.

212 212 Exercício Um projecto de investimento a 10 anos necessita de 10M de financiamento num projecto com uma rentabilidade R ~ N(15%, 15%)/ano. Para uma relação de alavancagem de 4 para 1 (i.e., detém 2.5M de acções e emite 7.5M de obrigações a uma taxa de juro fixa de 10%/ano) Determine o efeito da alavancagem na rentabilidade e risco dos capitais próprios.

213 213 Exercício A rentabilidade média e o risco dos capitais próprios aumentam.


Carregar ppt "1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2013/2014."

Apresentações semelhantes


Anúncios Google