A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. Hebert Monteiro Movimento em I dimensão. Iniciaremos o nosso curso estudando a mecânica como ciência que estuda o movimento. A mecânica é dividida.

Cópias: 3
Prof. Hebert Monteiro Movimento em I dimensão. Iniciaremos o nosso curso estudando a mecânica como ciência que estuda o movimento. A mecânica é dividida.

Prof. Hebert Monteiro Movimento em I dimensão. Iniciaremos o nosso curso estudando a mecânica como ciência que estuda o movimento. A mecânica é dividida.

Prof. Hebert Monteiro Movimento em I dimensão. Iniciaremos o nosso curso estudando a mecânica como ciência que estuda o movimento. A mecânica é dividida.

Apresentações semelhantes


Apresentação em tema: "Prof. Hebert Monteiro Movimento em I dimensão. Iniciaremos o nosso curso estudando a mecânica como ciência que estuda o movimento. A mecânica é dividida."— Transcrição da apresentação:

1 Prof. Hebert Monteiro Movimento em I dimensão

2 Iniciaremos o nosso curso estudando a mecânica como ciência que estuda o movimento. A mecânica é dividida em duas partes: Cinemática: que é o estudo do movimento sem referência às suas causas. Na cinemática definimos grandezas utilizadas na mecânica tais como: velocidade e aceleração. Dinâmica: é o estudo que engloba as leis do movimento, permite- nos prever o movimento de um objeto com base em informações sobre o mesmo e seu ambiente. Além das grandezas acima citadas a dinâmica aborda conceitos como força e massa. Introdução

3 Para descrevermos o movimento de um objeto em I dimensão, o primeiro passo é fixarmos um sistema de coordenadas, ou sistema de referência. Para o movimento ao longo de uma reta, isto exige primeiro a escolha de uma origem em algum ponto da reta e, em seguida, de uma direção positiva.

4 Verifiquem então o movimento realizado pelo carro de fórmula 1 do slide anterior. Estipulamos como origem o ponto início (correspondente à origem do plano cartesiano) e a direção positiva como a direita ou leste (direção positiva do eixo x do plano cartesiano). Na cena em questão analisada o carro realiza um movimento que vai de sua posição inicial x 1 até a sua posição final x 2. A sua posição inicial corresponde ao seu tempo inicial, assim como a sua posição final corresponde ao seu tempo final. Determinadas essas grandezas, já podemos calcular o deslocamento do carro que é medido em metros, através da fórmula: Δx = x 2 – x 1

5 Como nosso objeto se moveu na direção positiva, tanto seu deslocamento quanto as outras grandezas que serão medidas são positivas. Da mesma forma que calculamos o seu deslocamento através das suas posições iniciais e finais, também podemos calcular o tempo gasto para realizar o movimento através da equação que representa a variação de tempo do movimento: Δt = t 2 – t 1 A unidade de tempo utilizada nesse tipo de movimento é o segundo, portanto a nossa variação de tempo tem como unidade de medida o segundo.

6 Exercício: 1) Uma pessoa sai de sua casa e caminha em linha reta pela calçada no sentido oeste-leste, passa então por um ponto de ônibus e caminha 15 m até parar. Considerando sua casa como posição inicial e sabendo que ela está a 30 m a Oeste do ponto de ônibus. Determine o deslocamento total da pessoa e o seu sentido.

7 Velocidade Vetorial e Velocidade Média A velocidade de um objeto nos diz quão rapidamente ele caminha e a direção que ele segue em determinado instante. A melhor maneira de entender o significado do vetor velocidade é definir e discutir primeiro a velocidade vetorial média e utilizá-la em seguida para definir velocidade vetorial. A velocidade média de um objeto que se deslocou do ponto x 1 ao ponto x 2 no intervalo de tempo de t 1 a t 2 é dada por: v = x 2 – x 1 = Δx t 2 – t 1 Δt Como a unidade do deslocamento é metros e a do tempo é segundos, sendo assim, a unidade de medida que representa a média de velocidade do objeto no S.I. é m/s.

8 De acordo com a explicação anterior, a velocidade média é a média de rapidez que o objeto executou o seu deslocamento, durante um intervalo de tempo, sendo assim, ela é constante. Quando pensamos em vetor velocidade ou velocidade propriamente dita, estamos falando em velocidade instantânea, ou seja, a velocidade em um determinado instante e não uma média que se encontra dentro de um tempo. Para encontramos a velocidade o intervalo de tempo necessariamente tenderá a zero, ou seja: v = lim v = lim Δx Δt 0 Δt

9 Exercício: 1) Um carro sai de um posto de combustível e movimenta-se em uma auto-estrada no sentido leste-oeste. Depois de 15 s vê a sua frente uma placa de trânsito que está a exatamente 81 m de distância. O carro continua o seu movimento e para 13 metros após a placa de trânsito decorridos 22 segundos após a sua partida. Calcule: a) O seu deslocamento e a sua velocidade média. b) Caso o carro estivesse no sentido oeste-leste, como ficariam os resultados da pergunta a)?

10 Aceleração e aceleração média Assim como a velocidade indica uma taxa da variação da posição com o tempo, a aceleração descreve uma taxa de variação da velocidade com o tempo. Como a velocidade, a aceleração também é uma grandeza vetorial. Imaginem uma partícula em movimento ao longo do eixo x. Suponha que em um dato instante t 1 a partícula esteja no ponto x 1 e possua uma velocidade instantânea de Vx 1. Em outro instante chamado de t 2 a partícula está no ponto x 2 e possui velocidade instantânea de Vx 2. Definimos aceleração média como uma grandeza vetorial que é dada pela razão da variação da componente x da velocidade e o intervalo de tempo Δt. a = v 2 – v 1 = Δv t 2 – t 1 Δt

11 Como a unidade de medida da velocidade é m/s e da variação de tempo é dada em segundos, a unidade de medida que representa a aceleração ou a aceleração média de um objeto é m/s 2. Podemos agora definir aceleração ou aceleração instantânea seguindo o mesmo procedimento adotado quando definimos velocidade instantânea. Imaginem que um piloto de um carro de corridas acaba de entrar na reta final do Grand Prix como ilustra a figura a seguir:

12 Para definir a aceleração instantânea no ponto P1, imaginamos que o ponto P2 da figura se aproxima continuamente do ponto P1, de modo que a aceleração média seja calculada em intervalos de tempos cada vez menores. A aceleração instantânea é o limite da aceleração média quando o intervalo de tempo tende a zero. a = lim Δv Δt 0 Δt

13 Exercícios 1) A velocidade de um carro aumenta de 18 para 23 m/s em um intervalo de tempo de 5,8 s. a) Tomando a direção +x segundo a direção do percurso do carro, determine a aceleração média. b) Supondo a direção +x oposta a direção do percurso, determine a aceleração média. 2)Em um teste para um novo modelo de automóveis da empresa Motores Incríveis, o velocímetro é calibrado para ler em m/s ao invés de Km/h. A série de medidas a seguir foi registrada durante o teste ao longo de uma estrada retilínea muito longa. tempo (s) velocidade (m/s) Calcule e a aceleração média durante cada intervalo de 2 s. A aceleração é constante? Ela é constante em algum trecho do teste?

14 Movimento com Aceleração Constante O tipo de movimento acelerado mais simples é o movimento retilíneo com aceleração constante. Neste caso a velocidade dele varia com a mesma taxa durante todo o movimento. É um caso especial embora ocorra freqüentemente na Natureza. Por exemplo, um corpo em queda livre, que possui aceleração constante quando os efeitos da resistência do ar são desprezados. Quando a aceleração é constante a aceleração média para qualquer intervalo de tempo é a mesma que a aceleração instantânea. Logo: a = a. Assim é fácil deduzirmos equações para a posição de X e a velocidade V x em função do tempo.

15 Para a aceleração média temos: a = v2 – v1 t2 – t1 Se chamarmos v2 de Vx, v1 de V 0 x e t2 de t e fizermos o tempo t1 = 0, teremos que: a = Vx – V 0 x => Vx = V 0 x + a.t t - 0 Da mesma forma, através de múltiplas combinações de equações, encontramos outras fórmulas que representam o movimento retilíneo com aceleração constante em função das outras grandezas como posição, velocidade e tempo.

16 A utilização de uma ou de outra equação dependerá da necessidade apresentada na questão que estamos estudando, assim como das grandezas apresentadas.


Carregar ppt "Prof. Hebert Monteiro Movimento em I dimensão. Iniciaremos o nosso curso estudando a mecânica como ciência que estuda o movimento. A mecânica é dividida."

Apresentações semelhantes


Anúncios Google