A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

DERIVADAS E DIFERENCIAIS III Nice Maria Americano da Costa.

Apresentações semelhantes


Apresentação em tema: "DERIVADAS E DIFERENCIAIS III Nice Maria Americano da Costa."— Transcrição da apresentação:

1 DERIVADAS E DIFERENCIAIS III Nice Maria Americano da Costa

2 DIFERENCIAL De acordo com a definição de deriva, temos que: Portanto, se a derivada da função f*=(x) existe, pelo teorema do infinitésimo, podemos escrever, para a relação entre y e x, Com 0, quando x 0. Podemos então reescrever x O acréscimo da função é composto por duas partes. O primeiro termo é a parte principal, que é uma função linear de x.

3 Definição: Designamos de diferencial da função f(x), dy, como sendo esta parte principal do acréscimo da função: Se consideramos a função y=x, calculando a sua diferencial dy, teremos Podemos, então escrever: O que mostra eu o acréscimo da função difere de sua diferencial por uma quantidade infinitesimal. Para cálculos aproximados, teremos então

4 Exemplo: Achar a diferencial e o acréscimo da função y=x 2 Para x=10 e x=0,1 x x2x2 x 2 x

5 Exemplo: Ache a diferencial da função y dada pela expressão:

6 PROPRIEDADES DA DIFERENCIAL Diferencial da soma: a diferencial da soma de duas funções é a soma das diferenciais Diferencial do produto: a diferencial do produto de duas funções é dada por: Diferencial do quociente: a diferencial do quociente de duas funções é dada por: Diferencial da função composta: a diferencial de uma função composta é dada por:

7 DERIVADAS DE ORDENS SUPERIORES A derivada de uma função f(x) é também uma função de x. conseqüentemente, podemos calcular a sua derivada. Teremos a derivada segunda da função. Generalizando, podemos calcular a n-ésima deriva de uma função

8 EXEMPLOS A derivada segunda da função y=senx é: A derivada segunda da função y=e 2x x


Carregar ppt "DERIVADAS E DIFERENCIAIS III Nice Maria Americano da Costa."

Apresentações semelhantes


Anúncios Google