A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

THE MASTER PROBLEM 24 de junho de 2013.

Apresentações semelhantes


Apresentação em tema: "THE MASTER PROBLEM 24 de junho de 2013."— Transcrição da apresentação:

1 THE MASTER PROBLEM 24 de junho de 2013

2 GERAÇÃO DO FLUXOGRAMA COMPLETO DE UM PROCESSO

3 Problema completamente em aberto...
ENUNCIADO Propor um processo para a produção do composto P. Decisões a tomar Rota Química ? Fluxograma ? Dimensões ? Problema completamente em aberto...

4 Do Capítulo 1: Decisões a tomar: Árvore de Estados
Raiz Rota Química ? Fluxograma ? Dimensões ? P ? ? ? D+E P+F D,E P,F ?? A+B P+C A,B P,C Nível Tecnológico Seleção de uma Rota Fluxograma ? Dimensões ? 1 P A B C x ? T D 2 3 E F M 4 Nível Estrutural Síntese de um Fluxograma Dimensões ? Lucro? L x 6 8 x o = 3 x* 10 x o = 4 x o = 6 7 x o = 5 Nível Paramétrico Análise do Fluxograma Dimensionamento dos Equipamentos e das Correntes. Lucro.

5 SELECIONADA UMA ROTA QUÍMICA... Preços de Mercado ($/kmol)
Propor um fluxograma conceitual para um processo de produção do composto P, a partir das matérias primas A, B e E, segundo as reações abaixo, caso o mesmo apresente um potencial econômico favorável. R1: A + B  C + D R2: C + E  P + D Preços de Mercado ($/kmol) A (2) B (3) C(6) D(0) E(5) P(15)

6 RESOLUÇÃO

7 O problema pode ser resolvido facilmente, seguindo a metodologia ensinada nos Capítulos 6, X, 7 e 8.
1. Montar a Matriz Estequiométrica e calcular a Margem Bruta para avaliar o potencial econômico da rota química sugerida. 2. Montar os Sistemas de Reação, a partir dos dados cinéticos. 3. Montar o Fluxograma Embrião, constituído de dois módulos interligados pelo intermediário C. No decorrer da montagem são executados quase todos os balanços materiais necessários. 4. Detalhar os Sistemas de Separação usando informações do enunciado e do embrião. 5. Estabelecer uma Rede de Trocadores de Calor com base nas capacidades caloríficas fornecidas, nas temperaturas especificadas no enunciado e naquelas resultantes de balanços de energia no reator e nos separadores. Para obter uma solução única, usar o critério PD para a seleção dos pares de correntes.

8 AVALIAÇÃO ECONÔMICA PRELIMINAR CÁLCULO DA MARGEM BRUTA

9 Matriz Estequiométrica
R1: A + B  C + D R2: C + E  P + D Matriz Estequiométrica A B C D E P R1 - 1 + 1 R2 1 G -1 2 p ($/kmol) 3 4 5 15 MB = (-1)(2) + (-1)(3) + (2)(0) + (-1)(5) + (1)(15) = 5 $/kmol P O processo é economicamente promissor.

10 O problema pode ser resolvido facilmente, seguindo a metodologia ensinada nos Capítulos 6, X, 7 e 8.
1. Montar a Matriz Estequiométrica e calcular a Margem Bruta para avaliar o potencial econômico da rota química sugerida. 2. Montar os Sistemas de Reação, a partir dos dados cinéticos. 3. Montar o Fluxograma Embrião, constituído de dois módulos interligados pelo intermediário C. No decorrer da montagem são executados quase todos os balanços materiais necessários. 4. Detalhar os Sistemas de Separação usando informações do enunciado e do embrião. 5. Estabelecer uma Rede de Trocadores de Calor com base nas capacidades caloríficas fornecidas, nas temperaturas especificadas no enunciado e naquelas resultantes de balanços de energia no reator e nos separadores. Para obter uma solução única, usar o critério PD para a seleção dos pares de correntes.

11 Foram selecionados 2 reatores tipo tanque de mistura
SISTEMAS DE REAÇÃO Foram selecionados 2 reatores tipo tanque de mistura R1: A + B  C + D conversão por passo: 40%. - calor de reação: 0,073 kWh/kmol - a alimentação do reator deve estar a 120oC. R2: C + E  P + D - conversão por passo: 80%. - calor de reação: 0,069 kWh/kmol - a alimentação do reator deve estar a 100 oC. Os dois reatores devem ser termicamente isolados.

12 O problema pode ser resolvido facilmente, seguindo a metodologia ensinada nos Capítulos 6, X, 7 e 8.
1. Montar a Matriz Estequiométrica e calcular a Margem Bruta para avaliar o potencial econômico da rota química sugerida. 2. Montar os Sistemas de Reação, a partir dos dados cinéticos. 3. Montar o Fluxograma Embrião, constituído de dois módulos interligados pelo intermediário C. No decorrer da montagem são executados quase todos os balanços materiais necessários. 4. Detalhar os Sistemas de Separação usando informações do enunciado e do embrião. 5. Estabelecer uma Rede de Trocadores de Calor com base nas capacidades caloríficas fornecidas, nas temperaturas especificadas no enunciado e naquelas resultantes de balanços de energia no reator e nos separadores. Para obter uma solução única, usar o critério PD para a seleção dos pares de correntes.

13 GERAÇÃO DO FLUXOGRAMA EMBRIÃO

14 A B C D E P R R G S2 R2 M2 100 D 100 A 100 B 100 P 100 E 25 C 25 E 125 E 125 C S1 R1 M1 100 C 250 B 250 A 150 A C 150 B D 100 P C 100 D E 150 A B

15 As vazões foram obtidas por balanço material e serão observadas em todas as etapas posteriores do projeto S2 R2 M2 100 D 100 A 100 B 100 P 100 E 25 C 25 E 125 E 125 C S1 R1 M1 100 C 250 B 250 A 150 A C 150 B D 100 P C 100 D E 150 A B

16 O problema pode ser resolvido facilmente, seguindo a metodologia ensinada nos Capítulos 6, X, 7 e 8.
1. Montar a Matriz Estequiométrica e calcular a Margem Bruta para avaliar o potencial econômico da rota química sugerida. 2. Montar os Sistemas de Reação, a partir dos dados cinéticos. 3. Montar o Fluxograma Embrião, constituído de dois módulos interligados pelo intermediário C. No decorrer da montagem são executados quase todos os balanços materiais necessários. 4. Detalhar os Sistemas de Separação usando informações do enunciado e do embrião. 5. Estabelecer uma Rede de Trocadores de Calor com base nas capacidades caloríficas fornecidas, nas temperaturas especificadas no enunciado e naquelas resultantes de balanços de energia no reator e nos separadores. Para obter uma solução única, usar o critério PD para a seleção dos pares de correntes.

17 DETALHAR OS SISTEMAS DE SEPARAÇÃO S1 e S2
CAPÍTULO 7

18 SISTEMAS DE SEPARAÇÃO Para os efluentes dos reatores R1 e R2 deve-se utilizar destilação simples R1: A + B  C + D O efluente deve ser resfriado a 70 oC Volatilidades relativas adjacentes: A (1,5) C (2,0) B (1,2) D R2: C + E  P + D O efluente deve ser resfriado a 80 oC Volatilidades relativas adjacentes: C (2,0) E (1,7) P (1,3) D

19 150 A 100 C 150 B 100 D 150 A 100 C 150 B 100 D 100 C 150 B 100 D 100 D 150 B D1 D3 D2

20 25 C 25 E 100 P 100 D D4 100 P 100 D D5 25 C 25 E 100 P 100 D

21 FLUXOGRAMA ATUALIZADO

22 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 25 C 25 E 100 P 100 D

23 O problema pode ser resolvido facilmente, seguindo a metodologia ensinada nos Capítulos 6, X, 7 e 8.
1. Montar a Matriz Estequiométrica e calcular a Margem Bruta para avaliar o potencial econômico da rota química sugerida. 2. Montar os Sistemas de Reação, a partir dos dados cinéticos. 3. Montar o Fluxograma Embrião, constituído de dois módulos interligados pelo intermediário C. No decorrer da montagem são executados quase todos os balanços materiais necessários. 4. Detalhar os Sistemas de Separação usando informações do enunciado e do embrião. 5. Estabelecer uma Rede de Trocadores de Calor com base nas capacidades caloríficas fornecidas, nas temperaturas especificadas no enunciado e naquelas resultantes de balanços de energia no reator e nos separadores. Para obter uma solução única, usar o critério PD para a seleção dos pares de correntes.

24 SISTEMA DE INTEGRAÇÃO ENERGÉTICA Rede de Trocadores de Calor
Capacidade Calorífica (kWh / kmol oC) A (0,030) B (0,026) C (0,022) D (0,020) E (0,024) P (0,028) Reagentes A, B e E disponíveis a 25 oC R1 - calor de reação: 0,073 kWh / kmol. - a alimentação do reator deve estar a 100oC. - o efluente deve ser resfriado a 70 oC R2 - calor de reação: 0,069 kWh / kmol. - a alimentação do reator deve estar a 100 oC. - o efluente deve ser resfriado a 80 oC

25 D3 D5 D4 M2 R2 D1 D2 R1 M 1 01 03 04 02 A B A B To2 Td2 A B C D A T4 To3 Td3 B C D T5 B D T6 B T7 D T8 C T9 E T10 To11 Td11 To12 Td12 C E P D T14 C E T13 P T15 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 C E P D Para identificar as correntes quentes e frias, é necessário determinar as temperaturas To2 e To11 BALANÇOS DE ENERGIA

26 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Misturador M1 (To = T1*) (150)(0,03)(T4 – T1*) + (150)(0,026)(T7 – T1*) – [(250)(0,03) + (250)(0,026)] (To2 – T1*) = 0 25 C 25 E 100 P 100 D

27 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Reator R1 (To = Td2*)(e1 = 100) - [(150)(0,03) + (100)(0,022) + (150)(0,026) + (100)(0,02)] (To3 – Td2*) + (0,076)(100) = 0 25 C 25 E 100 P 100 D

28 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Separador D1 (To = Td3*) (150)(0,03) (Td3*- T4) - [(100)(0,022) + (150)(0,026) + (100)(0,02)](T5 - Td3*) = 0 T5 – T4 = 20 [(1,5)(2,0)(1,2)] = 72 oC 25 C 25 E 100 P 100 D

29 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Separador D2 (To = T5) (100)(0,022) (T5 – T9) - [(150)(0,026) + (100)(0,02)](T6 – T5) = 0 T6 – T9 = 20 [(2,0)(1,2)] = 48 oC 25 C 25 E 100 P 100 D

30 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Separador D3 (To = T6) (150)(1,3) (T7 – T6) – [(100)(1,0)](T8 – T6) = 0 T8 – T7 = 20 [(1,2)] = 24 oC 25 C 25 E 100 P 100 D

31 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Misturador M2 (To = T10) (100)(1,1) (T9 – T10) + 25 (1,1+1,2)(T13 – T10) – 125 (1,1+1,2)(To11 – T10) = 0 25 C 25 E 100 P 100 D

32 - [25 (1,1+1,2) + 100 (1,0 + 1,4)] (To12 – Td11*) + (59,5)(100) = 0
M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Reator R2 (To = Td11*)(e2 = 100) - [25 (1,1+1,2) (1,0 + 1,4)] (To12 – Td11*) + (59,5)(100) = 0 25 C 25 E 100 P 100 D

33 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Separador D4 (To = T12) - (150)(1,3) (T7 – T6) – (100)(1,0)(T8 – T6) = 0 T14 – T13 = 20 [(2,0)(1,7)(1,3)] = 88,4 oC 25 C 25 E 100 P 100 D

34 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 Separador D5 (To = T14) - (100)(1,4) (T15 – T14) – (100)(1,0)](T16 – T14) = 0 T16 – T15 = 20 [(1,3)] = 26 oC 25 C 25 E 100 P 100 D

35 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B 250 A 250 B To2 Td2 150 A 100 C 150 B 100 D 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 125 C 125 E 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16

36 D3 D5 D4 M2 R2 D1 D2 R1 M1 01 03 04 02 100 A 100 B To2 Td2 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16

37 O fluxograma deve ser otimizado
01 03 04 02 100 A 100 B To2 Td2 150 A T4 To3 Td3 1O0 C 150 B 100 D T5 150 B 100 D T6 150 B T7 100 D T8 100 C T9 100 E T10 To11 Td11 To12 Td12 100 P 100 D T14 25 C 25 E T13 100 P T15 100 D T16 05 06 07 08 T1 09 10 11 12 13 14 15 16 O fluxograma deve ser otimizado

38 Dimensionamento MISTURADOR RESFRIADOR CONDENSADOR
W14 = kg/h T*14 = 25 oC 14 W12 = kg/h T*12 = 30 oC W12 = kg/h T*12 = 30 oC 12 9 13 10 W13 = kg/h T13 = 25 oC W10 = kg/h T*10 = 80 oC Ar = 361 m2 Ac = 119 m2 11 8 W11 = kg/h T*11 = 15 oC W8 = kg/h T*8 = 15 oC W5 = kg/h T*5 = 80 oC 15 W15 = kg/h T13 = 25 oC W3 = kg/h x13 = 0,002 T3 = 25 oC f13 = 120 kg/h f23 = kg/h 5 EXTRATOR BOMBA EVAPORADOR 3 Ae = 124 m2 1 Vd = l W6 =8.615 kg/h T*6 = 150 oC *= 0,0833 h Extrato W*1 = kg/h x*11 = 0,002 T*1 = 25 oC f11 = 200 kg/h f31 = kg/h r* = 0,60 7 6 W2 = kg/h x12 = 0,0008 T2 = 25 oC f12 = 80 kg/h f32 = kg/h W7 = kg/h T*7 = 150 oC W4 = kg/h x*14 = 0,1 T4 = 80 oC f14 = 120 kg/h f24 = kg/h 2 4 Rafinado Dimensionamento

39 Otimização (r, T9, T12) MISTURADOR RESFRIADOR CONDENSADOR
W14 = 911 kg/h T*14 = 25 oC 14 W12 = kg/h T*12 = 27 oC W9 = kg/h T*9 = 44 oC 12 9 13 10 W13 = kg/h T13 = 25 oC W10 = kg/h T*10 = 80 oC Ar = 238 m2 Ac = 95 m2 11 8 15 W11 = kg/h T*11 = 15 oC W8 = kg/h T*8 = 15 oC W5 = kg/h T*5 = 80 oC W15 = kg/h T13 = 25 oC W3 = kg/h x13 = 0,004 T3 = 25 oC f13 = 101 kg/h f23 = kg/h 5 EXTRATOR BOMBA EVAPORADOR 3 Ae = 84 m2 1 Vd = l W6 =5.857 kg/h T*6 = 150 oC *= 0,0833 h Extrato W*1 = kg/h x*11 = 0,002 T*1 = 25 oC f11 = 200 kg/h f31 = kg/h r = 0,506 7 6 W2 = kg/h x12 = 0,001 T2 = 25 oC f12 = 98 kg/h f32 = kg/h W7 = kg/h T*7 = 150 oC W4 = kg/h x*14 = 0,1 T4 = 80 oC f14 = 101 kg/h f24 = 911 kg/h 2 4 Otimização (r, T9, T12) Rafinado


Carregar ppt "THE MASTER PROBLEM 24 de junho de 2013."

Apresentações semelhantes


Anúncios Google