A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Modelo computacional do sistema de controle neuromuscular humano

Apresentações semelhantes


Apresentação em tema: "Modelo computacional do sistema de controle neuromuscular humano"— Transcrição da apresentação:

1 Modelo computacional do sistema de controle neuromuscular humano
André Fabio Kohn, Ph.D. Laboratório de Engenharia Biomédica Escola Politécnica Universidade de São Paulo (U.S.P.) [Fapesp, CNPq, Capes]

2 DESAFIOS DO CONTROLE NEUROMUSCULAR

3 Estudos do sistema de controle neuromuscular humano
1) experimentais: eletromiografia (EMG); cinemática e dinâmica dos movimentos; respostas reflexas a entradas sensoriais, etc 2) teóricos: modelagem e simulação do sistema neuromuscular em diferentes níveis

4 Exemplos de sistemas usados em experimentação com humanos no Laboratório de Engenharia Biomédica da EPUSP para o estudo do controle neuromuscular.

5

6 TÓPICOS SOBRE CONTROLE POSTURAL
Postura ereta sobre rampas Fontes de variabilidade no controle postural O problema de interpretar relações entre variáveis em controle postural

7

8 Rogério R.L. Cisi e A.F. Kohn
Uma ferramenta para estudos teóricos de controle neuromuscular humano => simulador ReMoto Rogério R.L. Cisi e A.F. Kohn [Journal of Computational Neuroscience, 25: , 2008]. projetado a partir de conhecimento biológico utiliza a Web (elimina downloads, programação, etc) modela as redes de neurônios da medula espinhal e a ativação de músculos da perna, em função dos comandos descendentes cerebrais.

9

10 Postura, marcha , etc

11 rede de neurônios da medula

12

13

14

15 Aplicações * Entendimento do controle neuromuscular em sujeitos sãos ou com alteração neuromuscular. * Geração de EMG e força para testar algoritmos de processamento de sinais e de reconhecimento de padrões. * e-learning em cursos de Engenharia Biomédica, neurofisiologia clínica, etc

16 Modelagem Matemática 16

17 Motoneurônios +) differentes valores de parâmetros para tipos S, FR e FF +) baseado em condutâncias 17

18 Motoneurônios 18

19 Motoneurônios Em: m(t), h(t), n(t) e q(t) obedecem a uma equação diferencial da forma Alfas e betas aproximados por pulsos retangulares de ~ 0.6 ms (Destexhe, 1997) => variáveis de estados serão funções exponenciais, ou seja, de rápida computação. Esses pulsos retangulares são disparados quando o potencial de membrana atinge um limiar fixo. 19

20 Motoneurônios Critérios para ajustes de parâmetros e validação dos modelos foram baseados em características de motoneurônios reais como: Resistência de entrada e constante de tempo de membrana Amplitude e duração da AHP Relação f x I Adaptação bem como características quando os motoneurônios estão em rede, como p.ex., a distribuição dos intervalos entre disparos. Dados fisiológicos de gatos e seres humanos 20

21 Rede de Motoneurônios

22 Sinapses Sinapses com depressão ou com facilitação => valor de T ao disparar um PA pré-sináptico depende do tempo que passou da última ativação sináptica. 22

23 Sinapses Destexhe et al (1994) r(t) : fração de receptores pós-sinápticos ligados (i.e., canais sinápticos abertos) em relação ao total de receptores 23

24 Sinapses A cada ativação pré-sináptica => gsyn(t)=gmax·r(t), 0≤r(t)≤1 e que resultará em alteração da corrente pós-sináptica: Valores do potencial de reversão (Esyn ij) definem se a sinapse é excitatória ou inibitória. 24

25 Comandos cerebrais descendentes: processos pontuais Poisson
ou com intervalos entre disparos (ISI) Gaussianos 25

26 Potenciais de unidades motoras (MUAPs)
Funções Hermite-Rodriguez com filtragem passa-banda: Atenuação de amplitude de MUAP e alargamento de MUAP com aumento da distância entre eletrodo e unidade motora (Fuglevand et al, 1992, Hermens et al, 1992) 26

27 Abalos (“twitch”) de unidades motoras
Resposta ao impulso de um sistema de segunda ordem criticamente amortecido Implementação: filtro digital. Saturação de força de uma unidade motora feita por limiar. Inclinação da relação força x frequência aproximadamente 8% / Hz para unidade tipo S, que está de acordo com dados de gatos e humanos. 27

28

29 Janelas de Configuração
(exemplos)

30

31

32

33

34

35 Resultados de Simulações

36 Motoneurônio: exemplo de uma corrente injetada no soma causando um potencial de ação
36

37 unidades motoras por meio do eletromiograma de agulha ou de superfície
Estímulo a um motoneurônio: degrau de corrente injetado no soma => disparos periódicos Impossível de obter em humanos, mas possível no simulador. Em humanos, pode-sa captar os MUAPs de algumas unidades motoras por meio do eletromiograma de agulha ou de superfície

38 Somação de abalos de unidade motora disparando a aprox
Somação de abalos de unidade motora disparando a aprox. 13/s, como na figura anterior => força atingindo um platô

39 Motoneurônios em rede e os intervalos entre disparos de potenciais de ação
Exemplo: histogramas de intervalos entre disparos de (a) MN1 (b) e MN91 de músculo TA simulado em ReMoto Exemplos obtidos de humanos (Person e Kudina, 72) => formatos são semelhantes ao simulado 39

40 Motoneurônio com uma rampa de corrente injetada no soma

41 Estímulos a 100 MNs que ativam um dado músculo: uma rampa de corrente injetada nos corpos celulares
até cerca de 450 ms houve recrutamento de novas unidades motoras e, depois, somente aumentos nas frequências de disparos

42 O percentual de conectividade das vias descendentes pode ser selecionado. Exemplo mostra 10% e 70% para 2 axônios:

43 10% de conectividade pool de MNs do sóleus, com 900 MNs, ativação descendente com 100 processos Poisson independentes (ISI médio 1 ms)

44 70% conectividade pool de MNs do sóleus, com 900 MNs, ativação descendente com 100 processos independent com ISI Gaussianos com média 10 ms e std 0.1 ms e com

45 Não há dados experimentais
ReMoto: modulação senoidal da intensidade da ativação descendente (à esquerda), força muscular & instantes de disparos de todos os MNs (à direita). Força exercida é rítmica. Não há dados experimentais 45

46 ReMoto: EMG quando apenas 2 unidades motoras disparam
46

47 ReMoto: padrão de interferência do EMG e os instantes de disparos de cada uma das (> 750) unidades motoras 47

48 Onda M e reflexo H para estudos clínicos: utilidade em estudar via reflexa que passa pela medula espinhal 48

49

50 ReMoto: onda M e reflexo H
Onda M e reflexo H de sujeito normal, obtidos no LEB, EPUSP por Eugênia C.T. de Mattos 50

51 Benchmark Cada estação servidora: 2 Xeon 3.0 GHz dual core, 64 bit CPUs, 4 Gb RAM. Simulação de 1 s de tempo neural com todos os neurônios (~ 6000 neurônios e sinapses) ativados pelas vias descendentes e por estimulação nervosa => ~13 min de tempo de computação Simulações mais “normais” levam bem menos tempo de computação 51

52 Aplicações Pesquisa e Diagnóstico Medula espinhal
Patologias neurológicas Neurofisiologia clínica Distúrbios neuromusculares Neurociência teórica (neurônio isolado ou rede neuronal) Geração de EMG e força para testar algoritmos de processamento de sinais e de reconhecimento de padrões. Ensino (e-learning) e Treinamento Engenharia Biomédica Neurociência 52

53 Melhorias Modelos dos elementos podem ser tornados ainda mais realistas. Novos elementos podem ser adicionados, como modelos de fusos neuromusculares e órgãos tendinosos de Golgi, interneurônios distintos, biomecânica da perna e pé de ser humano, etc Simulador pode ser paralelizado para diminuir o seu tempo de simulação. 53

54 Simuladores do sistema neuromuscular já existentes
Foram, em geral, feitos para uso de um único grupo de pesquisa. Bashor (1998) fez um baseado em rotinas em Fortran que tem sido adaptado por outros grupos. Outra classe de programas serve para simular EMG e força (Fuglevand et al, 1993) impondo estatísticas de disparos de unidades motoras (portanto, não representam a dinâmica neuronal). Todos requerem programação, não são utilizáveis pela Web e não são interativos.

55 Obrigado aos Organizadores e aos coordenadores do Comitê Científico pelo convite.
Agradeço pela atenção e fico à disposição para perguntas.


Carregar ppt "Modelo computacional do sistema de controle neuromuscular humano"

Apresentações semelhantes


Anúncios Google