A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Sistemas de Numeração. A Informação e sua Representação Os computadores manipulam dados (sinais brutos e sem significado individual) para produzir informações.

Apresentações semelhantes


Apresentação em tema: "Sistemas de Numeração. A Informação e sua Representação Os computadores manipulam dados (sinais brutos e sem significado individual) para produzir informações."— Transcrição da apresentação:

1 Sistemas de Numeração

2 A Informação e sua Representação Os computadores manipulam dados (sinais brutos e sem significado individual) para produzir informações. A conversão de dados em informações, e estas novamente em dados, é uma parte tão fundamental em relação ao que os computadores fazem que é preciso saber como a conversão ocorre para compreender como o computador funciona. Infelizmente os computadores não usam nosso sistema de numeração. 2

3 Sistema de Numeração Conjunto de símbolos utilizados para representação de quantidades e de regras que definem a forma de representação. Cada sistema de numeração é apenas um método diferente de representar quantidades. As quantidades em si não mudam; mudam apenas os símbolos usados para representá-las. A quantidade de algarismos disponíveis em um dado sistema de numeração é chamada de base. Representação numérica mais empregada: notação posicional. 3 A Informação e sua Representação

4 Notação Posicional Valor atribuído a um símbolo dependente da posição em que ele se encontra no conjunto de símbolos que representa uma quantidade. O valor total do número é a soma dos valores relativos de cada algarismo (decimal). 4 Sistema de numeração decimal A Informação e sua Representação

5 Sistemas de Numeração Bases Binária 0, 1 Octal 0, 1, 2, 3, 4, 5, 6, 7 Decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 5

6 Sistemas de Numeração Representação nas bases – Base decimal = 7 x x x = 7 X X X X 10 0 Representação em polinômio genérico Número = d n 10 n + d n-1 10 n d d

7 Sistemas de Numeração Mudança da base binária para decimal (10) x 2 0 = 0 1 x 2 1 = 2 0 x 2 2 = 0 1 x 2 3 = 8 0 x 2 4 = 0 0 x 2 5 = 0 1 x 2 6 = 64 1 x 2 7 = x 2 8 = 0 1 x 2 9 = = = 714

8 Sistemas de Numeração Representação de hexadecimal na base = 3 x x x x x = = Representação em polinômio genérico Número = h n 16 n + h n-1 16 n h h

9 Sistemas de Numeração Mudança da base hexadecimal para decimal 2CA 16 A x 16 0 = 10 x 16 0 = 10 C x 16 1 = 12 x 16 1 = x 16 2 = = = 714

10 Sistemas de Numeração Representação de octal na base = 5 x x x x x = = Representação em polinômio genérico Número = o n 8 n + o n-1 8 n o o

11 Sistemas de Numeração Mudança da base octal para decimal (10) x 8 0 = 2 1 x 8 1 = 8 3 x 8 2 = x 8 3 = = = 714

12 Sistemas de Numeração Mudança da base 10 para binário |_2_ |_2_ |_2_ 0 89 |_2_ 1 44 |_2_ 0 22 |_2_ 0 11 |_2_ 1 5 |_2_ 1 2 |_2_

13 Sistemas de Numeração Mudança da base 10 para binário |_2_ |_2_ |_2_ 0 89 |_2_ 1 44 |_2_ 0 22 |_2_ 0 11 |_2_ 1 5 |_2_ 1 2 |_2_ =

14 Sistemas de Numeração Mudança da base 10 para octal |_8_ 2 89 |_8_ 1 11 |_8_ =

15 Sistemas de Numeração Mudança da base 10 para hexadecimal |_16_ |_16_ = 2CA 16 Hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F A=10, B=11, C=12, D=13, E=14, F=15

16 Sistemas de Numeração Bit – menor partícula de informação no computador, pode representar 0 ou 1. Esses dois símbolos são opostos e mutuamente exclusivos. Byte – conjunto de 8 bits. Base Binária. 16

17 Conversões de números fracionários Do mesmo modo que os números inteiros podem ser convertidos de diferentes bases, os números fracionários também podem ser convertidos usando notação posicional. Exemplo - 10, ,5 10 = 1 x x x

18 Conversões de números fracionários Podemos utilizar a mesma regra para converter números binários fracionários para decimal. Exemplo: 101, ,101 2 = 1 x x x x x x 2 -3 = , ,125 = 5,

19 Conversões de números fracionários Podemos também converter números decimais fracionários para binários através da regra prática a seguir. Exemplo: converter 8, = ? 2 1°- Converter a parte inteira do número para binário: Resultado: 8 10 =

20 Conversões de números fracionários 2°- Multiplicar a parte fracionária do número por 2, separando a parte inteira e repetindo o processo até que seja ZERO, ou seja: 8, parte fracionária 0, ,375 x 2 = 0,750 0,750 x 2 = 1,500 0,500 x 2 = 1,000 0,000 ZERO Resultado: 0, =

21 Conversões de números fracionários 3°- Juntar a parte inteira e fracionária num único número binário: Resultado final: 8, = 1000,

22 Bits podem representar qualquer coisa! 26 letras => 5 bits maisc./minusc. + pontuação 7 bits (em 8) (ascii) Código padrão para atender todas as linguagens do mundo 16 bits (unicode) Valores lógicos 0 -> Falso, 1 => Verdadeiro Representações 22

23 Tabela Ascii 23

24 Representação de Números Um programa (a seqüência de instruções) deverá manipular diferentes tipos de dados: Inteiros (ponto fixo) Reais (ponto flutuante) O tipo de dado que está sendo fornecido ao programa deverá ser informado pelo programador, através de declarações, fazendo com que o programa interprete o dado fornecido de acordo com a declaração. Por exemplo, na linguagem C, declarações tipo int num; ou float sal; indicam que a variável num é um número inteiro (int) e a variável sal é um número real (float), representação científica, isto é, representado na forma [(Sinal) Valor x Base (elevada a Expoente)]. 24

25 Representação de Números Forma intuitiva - conversão do número decimal para seu correspondente em binário. Problema - os números podem ser positivos ou negativos - definir como representar o sinal. Representação - utilização de mais um bit na representação (o bit mais representativo), representando o sinal, com a seguinte convenção: bit 0 ==> sinal positivo bit 1 ==> sinal negativo. 25

26 Bit de Sinal Uma forma de representar números binários positivos e negativos é feita através de um bit de sinal, que fica mais a esquerda do número (MSB – bit mais significativo). Como já dito, se o bit de sinal for 0, o número binário é positivo (+) e o bit de sinal for 1, o número binário é negativo. Resto dos bits podem ser valores significativos do número. 26

27 Como representá-los? Destinar metade dos padrões binários para nº negativos e a outra para os positivos. Teremos 2 metades iguais:... / +2, -2 / +1, -1 / +0, -0 2 binários deferentes para representar o nº 0. Números Negativos 27

28 Representação em sinal e magnitude Valor decimalValor binário com 8 bits (7 + bit de sinal) (bit inicial 0 significa positivo) (bit inicial 1 significa negativo) (bit inicial 0 significa positivo) (bit inicial 1 significa negativo) Assim, uma representação em binário com n bits teria disponíveis para a representação do número n-1 bits (o bit mais significativo representa o sinal). Essa representação tem o nome de representação em sinal e magnitude. 28

29 Representação em sinal e magnitude A magnitude (isto é, o valor absoluto, que independe de sinal) de um número é representada em binário. O sinal é representado por um bit (o bit mais significativo, isto é, o bit mais à esquerda na representação). O valor dos bits usados para representar a magnitude independe do sinal, isto é, sendo o número positivo ou negativo, a representação binária da magnitude será a mesma, o que varia é apenas o bit de sinal. Ex.: 0011 = = -3 (011 equivale ao valor absoluto 3) 29

30 Representação em sinal e magnitude ARITMÉTICA EM SINAL E MAGNITUDE Algoritmo da soma: a) verificar o sinal das parcelas b) se os sinais forem iguais: repetir o sinal somar as magnitudes c) se os sinais forem diferentes verificar qual parcela tem maior magnitude repetir o sinal da maior magnitude subtrair a menor magnitude da maior magnitude 30

31 Representação em sinal e magnitude ARITMÉTICA EM SINAL E MAGNITUDE Algoritmo da subtração: O algoritmo da subtração é o mesmo da soma, sendo feita como se fosse uma soma de dois números que tem os sinais diferentes. 31

32 Representação em sinal e magnitude A representação em sinal e magnitude apresenta uma grande desvantagem: ela exige um grande número de testes para se realizar uma simples soma de dois números inteiros. O algoritmo é complicado de ser realizado no computador, o que resulta em baixa eficiência (execução lenta). Um outro ponto negativo é termos duas representações para o zero. 32

33 Representação em sinal e magnitude Devido à complexidade dos algoritmos para os computadores operarem com NÚMEROS NEGATIVOS quando se usa a representação em sinal e, são comumente adotadas outras formas que facilitam e tornam mais eficiente a manipulação de operações aritméticas em computadores: as representações em complemento. 33

34 Representação em Complemento A grande vantagem da utilização da representação em complemento é que a subtração entre dois números pode ser substituída pela sua soma em complemento. 34

35 Complemento a 2 Por questões de convenção e eficiência aritmética, utiliza-se a notação de complemento a 2 para se trabalhar com números binários no computador Utilizando esta notação, a subtração é uma soma. Por exemplo: 7 – 5 seria 7 + (-5) Embora seja uma alteração sutil, faz uma enorme diferença para o computador 35

36 Complemento a 2: forma de representação Garante que a soma de um número com seu complemento seja sempre 0 Método: Inverter cada 0 para 1 e cada 1 para 0 somar 1 ao resultado Exemplos: 2 para -2 2 = (invertido) (+1) (-2) Complemento a 2 36

37 É preciso também representar números fracionários (reais), que muitas vezes são maiores que aqueles que são possíveis representar como inteiros. 0, = 1,0 x = 3,15576 x 10 9 Ponto Flutuante 37

38 Ponto flutuante Número de ponto flutuante: padrão IEEE (a) Precisão simples (b) Precisão dupla 38

39 Representação Ponto Flutuante - Normalizado Um nº em notação científica que não tem 0s na parte inteira é dito normalizado. 1,0 x está normalizado 0,1 x ou 10,0 x não está normalizado Na base 2, a mesma representação é possível. 1,xxxxxxxxx x 2 yyyy 39 Ponto flutuante

40 Números em pf simples têm o formato abaixo: sexpoentsignificat Onde: s: campo de sinal com 1 bit; expoent: campo para o expoente (E), com 8 bits (incluindo seu sinal); significat: campo para a parte fracionária (F), com 23 bits. Tendo E 8 bits e F 23 bits, é possível representar frações (na base 10) tão pequenas como 2,0 * e nº tão grandes como (na base 10) 2,0 x Ainda assim pode ocorrer overflow na aritmética em pf. 40 Ponto flutuante

41 Se uma fração é pequena demais para ser representada, significa que um expoente negativo não pode ser representado em 8 bits. Essa situação denomina-se underflow. Para reduzir a possibilidade de ocorrer underflow ou overflow, existe a representação em pf de dupla precisão, que permite representar números de 2,0 x até 2,0 x Ponto flutuante

42 Números normalizados nunca tem 0 antes da vírgula; Binários representam somente 0 e 1; Logo, binários normalizados teriam somente 1 antes da vírgula. Portanto, se binários normalizados tem sempre 1 antes da vírgula, o hardware considera-o implícito e não o representa. A representação busca facilitar operação realizadas pelo hardware. Sinal no campo mais significativo: permite testes rápidos para maior que, menor que e igual a zero. Expoent antes do significant: permite uma ordenação simples, pois números com expoentes maiores são maiores que números que tem expoente menor (números de mesmo sinal). Exp oentes em pf não utilizam complemento a dois. Como determinar, então, expoentes negativos? 42 Ponto flutuante

43 Expoentes negativos Chamada Notação Desviada, onde o desvio é um número subtraído para se ter o número real. IEEE 754 usa desvio de 127 (2 8 /2, descontado o 0) para prec. simples. Subtrair 127 do campo Expoente para se ter o valor real do expoente é o desvio para precisão dupla. Subtrair 1023 do campo Expoente para se ter o valor real do expoente. 43 Ponto flutuante

44 Exemplo: O expoente -1 no padrão IEEE 754 seria representado como: = 126 = E o expoente +1: = 128 = Ponto flutuante

45 Precisão simples: Bit S Expoent Significat Nº de bits (1)S x (1 + Significando) x 2 (Expoente 127) 45 Ponto flutuante

46 Overflow 46 Resultado muito grande para a word finita do computador E se o resultado de uma soma (ou subtração) for um número maior que o que é possível representar com os bits da word? No caso ocorre overflow. Por exemplo, somar dois números de n bits pode não produzir um número de n bits aqui um carry transbordou

47 Overflow 47 Detectando overflow Overflow nunca ocorre quando somamos dois operandos de sinais diferentes. Overflow nunca ocorre quando subtraímos dois operandos de sinais iguais. Nos demais casos pode ocorrer overflow. O overflow ocorre quando o valor afeta o sinal: – overflow ao somar dois positivos produz um negativo – ou, somar dois negativos produz um positivo – ou, subtraia um negativo de um positivo e obtenha um negativo – ou, subtraia um positivo de um negativo e obtenha um positivo

48 Overflow 48 Exemplo: (subtração de operandos com sinais diferentes) Complemento a dois para determinar o números -2: +2 = = = = = =

49 Overflow 49 Portanto, em complemento de 2, a soma de dois números de mesmo sinal gera estouro se o resultado for de sinal diferente: Ex: Pos + Pos = Neg ou Neg + Neg = Pos


Carregar ppt "Sistemas de Numeração. A Informação e sua Representação Os computadores manipulam dados (sinais brutos e sem significado individual) para produzir informações."

Apresentações semelhantes


Anúncios Google