Carregar apresentação
PublicouLevi Bastos Alterado mais de 10 anos atrás
1
1 Lei na Forma de Taxas e sua aplicação a Sistemas Abertos
2
Primeira lei da termodinâmica em termos de taxa
Muitas vezes é vantajoso usar a primeira lei em termos de taxa, expressando a taxa média ou instantânea de energia que cruza a fronteira do sistema como calor e trabalho — e a taxa de variação de energia do sistema. Procedendo desse modo estamos nos afastando do ponto de vista estritamente clássico, pois basicamente a termodinâmica clássica cuida de sistemas que estão em equilíbrio e o tempo não é um parâmetro importante para sistemas que estão em equilíbrio. Consideremos um intervalo de tempo dt, durante o qual uma quantidade de calor dQ atravessa a fronteira do sistema, um trabalho dW é realizado pelo sistema, a variação de energia interna é ΔU, de energia cinética é Δ (EC) e da energia potencial é Δ (EP). Da primeira lei, pode-se escrever dQ + dW = dU + dEC +dEP
3
taxa instantânea de transferência de calor, potencia [W]
taxa instantânea de transferência de trabalho, potência [W] Portanto a primeira lei em termos de fluxo é: Exercício 4.1. Durante a operação de carregamento de uma bateria, a corrente elétrica, I, é de 20 ampéres, e a tensão, e, é de 12,8 Volts, A taxa de transferência de calor, Q , da bateria para o meio é de 10 W. Qual a taxa de aumento de energia interna?
4
Lei da Conservação da Massa
5
Fórmula Geral da Equação da Massa
V constante na seção ( v media ) Balanço de massa em regime permanente Balanço de massa em regime permanente ( fluido compressível )
6
Exercício Ar está escoando no interior de um tubo de 0,2 m de diâmetro à velocidade uniforme de 0,1 m/s. A temperatura e a pressão são 25 oC e 150 kPa. Determinar a taxa mássica, ou vazão mássica.
7
Exercício Um tanque de água cilíndrico com 1,2 m de altura e 0,9 de diâmetro , aberto, encontra-se inicialmente cheio de água. Abrindo-se uma tampa na parte inferior do tanque permite-se que saia um jato de água com diâmetro de 13 mm . Determinar o tempo necessário para que o nível do tanque atinja 0,6 m , medido a partir do fundo do tanque,
8
Exercício Uma mangueira de jardim conectada a um bocal é usada para encher um balde de 10 galões. O diâmetro da mangueira é de 2 cm e ele se reduz a 0,8 cm na saída do bocal. São necessários 50 s para encher o balde com água. Nessas condições determine: as vazões volumétrica e mássica de água através da mangueira a velocidade de média na saída do bocal.
9
Primeira lei da termodinâmica a num sistema aberto
10
Transporte de energia pela massa
11
Exercício Vapor escapa de uma panela de pressão de 4 l , cuja pressão interna é de 150 kPa. Observa-se que a quantidade de líquido da panela diminui em 0,6 l por minuto , quando são estabelecidas condições de operação estáveis. Sabe-se que a seção transversal da abertura de saída é de 8 mm2 . Para essas condições determinar: a) o taxa mássica e a velocidade do vapor na saída; b) as energias total e de escoamento por unidade de massa de vapor; c) a taxa de saída de energia da panela.
12
Taxa de variação de energia para processo em regime permanente e com escoamento unidimensional.
13
Exercício 4.6
14
Dispositivos de Engenharia com escoamento em regime permanente.
A. Turbinas e compressores. Turbina , W ou < 0 Compressor, W ou >0 Exercício 4.7. Ar a 100kPa e 280 K é comprimido em regime permanente até atingir 600 kPa e 400 K. O vazão mássica do ar é 0,02 kg/s e sabe-se que ocorre uma perda de calor de 16 kJ/kg durante o processo. Considerando que as variações de energia potencial e cinética são desprezíveis, determinar a potência consumida pelo equipamento.
15
Exercício 4.8. A potencia gerada por uma turbina adiabática é de 5 MW e as condições de entrada e saída estão indicadas na tabela ao lado. Com base nessas informações: comparar as magnitudes das grandezas Δh, Δec, Δep; determinar o trabalho realizado por unidade de massa de vapor que escoa pela turbina; c) calcular o vazão mássica de vapor. Entrada Saída P(MPa) 2 0,015 T(oC) 400 - V(m/s) 50 180 Z(h) 10 6 y 0,90
16
Determinar a potência fornecida pela turbina.
Exercício 4.9. O fluxo de massa que entra em uma turbina a vapor d'água é de 1,5 kg/s e o calor transferido da turbina para o meio é de 8,5 kW. São conhecidos os seguintes dados para o vapor de água que entra e sai da turbina: Determinar a potência fornecida pela turbina. ; Regime permanente, Primeira lei da termodinâmica Do dados do problema, Q v c =-8,5kW
17
B. Trocadores de calor.
18
Exercício 4.10
19
C. Escoamento em tubos e dutos.
Exercício 4.11
20
A. Válvulas de estrangulamento .
Processos de Estrangulamento e o Coeficiente de Joule -Thomson A. Válvulas de estrangulamento . Dispositivos que restringem o escoamento e causam queda significativa de pressão . A queda de pressão é quase sempre acompanhada por queda na temperatura . A magnitude da queda ( ou eventual aumento da temperatura , depende de uma propriedade dos fluidos chamada coeficiente de Joule-Thomson. São dispositivos adiabáticos( Q =0 ), nos quais não há exportação ou importação de trabalho (W=0) e variação de energia potencial é desprezível ( Δep =0). Se vs ~ ve Dispositivo isoentálpico
21
(Coeficiente de Joule-Thomson)
Se há diminuição de pressão, há diminuição de temperatura, se µJ >0; Se há diminuição de pressão, há aumento de temperatura, se µJ <0; (hidrogênio, H2 e o hélio, He) Para um valor nulo do coeficiente de Joule Thomson, temos o denominado ponto de inversão. A ilustra essas observações, onde se nota que o lugar geométrico definido por todos os pontos de inversão constitui a curva de inversão. Gráfico T x P, mostrando o Comportamento do Coeficiente de Joule-Thomson.
22
Exercício O fluido refrigerante 134a entra no tubo capilar de um refrigerador com liquido saturado a 0,8 MPa e é estrangulado e a sua pressão na saída é 0,12 MPa. Determinar o título do fluido no estado final e a qual a queda de temperatura.
23
Processos de Estrangulamento e o Coeficiente de Joule -Thomson
B. Bocais e difusores . Exercício Provar que são dispositivos isoentálpicos. Exercício Ar entra a 10 oC e 80 kPa no difusor de um motor a jato com velocidade de 200m/s . A área de entrada do difusor é 0,4 m2. O ar sai do difusor com uma, velocidade muito pequena comparada à de entrada . Determinar a) a vazão mássica de ar e b) a temperatura na saída.
24
Exercício Vapor de água a 0,5 MPa e 200 oC entra em um bocal termicamente isolado com uma velocidade de 50 m/s, e sai à pressão de 0,15 MPa e à velocidade de 600 m/s. Determinar a temperatura final do vapor e ele estiver superaquecido e o título se for vapor úmido. Da 1a lei da termodinâmica, regime permanente resulta
25
Análise de uma unidade geradora .
Exercício Considere uma instalação motora a vapor simples como mostrada na figura abaixo. Os dados na tabela referem-se a essa instalação. Determinar as seguintes quantidades , por kg de fluido que escoa através da unidade. 1 -Calor trocado na linha de vapor entre o gerador de vapor e a turbina 2 -Trabalho da turbina 3 -Calor trocado no condensador 4 -Calor trocado no gerador de vapor.
26
Como nada foi dito sobre as velocidades dos fluxos mássicos e suas posições, as variações de energia cinética e potencial, são desprezadas. As propriedades dos estados 1,2 e 3 podem ser lidas nas tabelas termodinâmicas, assim: P1=2,0 MPa; T1=300 oC. h1 = 3023,5 kJ/kg P2=1,9 MPa; T2=290 oC h2 = 3002,5 kJ/kg P3=15,0 kPa; y = 0,9 T 250 290 300 P 1,8 2911,0 3029,2 1,9 x z y 2,0 2902,5 3023,5 hl = 25,91 kJ/kg hv = 2599,1 kJ/kg As propriedades do estado 4 devem ser lidas da tabela de propriedades comprimidas ou, de forma aproximada, da tabela de propriedades saturadas para a temperatura dada. Assim P=14,0 kPa; T = 45 oC h4 = 188,5 kJ/kg 15 kPa 40 180,75 60 263,65
27
1 Calor trocado na linha de vapor entre o gerador de vapor e a turbina
Aplicando-se a 1a lei por unidade de fluxo de massa temos 2 Trabalho da turbina Deve-se aplicar a primeira lei à turbina para fluxo unitário. Uma turbina é essencialmente uma máquina adiabática. Portanto é razoável desprezar o calor trocado com o meio ambiente. Assim,
28
3 .Calor trocado no condensador
Neste caso, não há trabalho, assim, 4. Calor trocado no gerador de vapor. Neste caso não há realização de trabalho, e a primeira lei fica Na resolução, necessitamos do valor de h5, que pode ser obtido considerando um volume de controle na bomba do sistema.
29
5. Trabalho na bomba A primeira lei aplicada à bomba, com a hipótese de que o processo é adiabático, (Q=0 ), não há transferência de calor da bomba para o meio ou vice-versa, resulta: Portanto: Assim para o gerador, obtém-se:
Apresentações semelhantes
© 2024 SlidePlayer.com.br Inc.
All rights reserved.