A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Unidade Departamental de Engenharia - Secção de Química

Apresentações semelhantes


Apresentação em tema: "Unidade Departamental de Engenharia - Secção de Química"— Transcrição da apresentação:

1 Unidade Departamental de Engenharia - Secção de Química
ELECTROQUÍMICA Valentim M. B. Nunes Unidade Departamental de Engenharia - Secção de Química Novembro de 2018

2 Introdução Electroquímica  Ramo da Química que trata da interconversão da energia eléctrica em energia química Processos Electroquímicos: Reacções espontâneas em que a energia libertada por uma reacção é convertida em electricidade. Processos em que a electricidade é utilizada para forçar a ocorrência de uma reacção química não espontânea. Áreas da electroquímica: electroanálise, electrocatálise, electrosíntese, etc..

3 Processos Industriais com base na Electroquímica (Exemplos)
Produção de metais: alumínio (Al), sódio (Na), lítio (Li), magnésio (Mg), zinco (Zn) e cobre (Cu); Produção de gases: hidrogénio (H2) e cloro (Cl2); Produção de compostos inorgânicos: hidróxido de sódio (NaOH), hipoclorito de sódio (NaOCl); Produção de compostos orgânicos: compostos organofosforados; Electrodeposição metálica: modificar a aparência, dureza, resistência à corrosão, incluindo modernos microcircuitos electrónicos; Produção electroquímica de energia eléctrica: pilhas, baterias, acumuladores

4 Zn (s) + Cu2+(aq)  Zn2+(aq) + Cu(s)
Reacções de oxidação-redução (redox) Reacções de oxidação-redução são aquelas em que há transferência de electrões entre espécies. Zn (s) + Cu2+(aq)  Zn2+(aq) + Cu(s) Espécie oxidada - perde electrões (agente redutor!) Espécie reduzida - ganha electrões (agente oxidante!) Combustão? Corrosão!

5 Número (ou estado) de oxidação
O número de oxidação de um elemento é a carga que ele teria se numa dada ligação química os electrões fossem todos atribuídos ao átomo mais electronegativo. i) o estado de oxidação de todos os elementos em qualquer forma alotrópica é zero (O2, Fe, Al, S8, etc…) ii) o estado de oxidação de um ião monoatómico é igual à carga do ião. iii) o estado de oxidação do hidrogénio é +1 em todos os compostos excepto nos hidretos (LiH, CaH2,..) onde é -1. iii) o estado de oxidação do oxigénio é -2 em todos os compostos excepto nos peróxidos (H2O2) onde é -1. iv) todos os outros estados de oxidação são calculados de forma que a soma algébrica dos estados de oxidação seja igual à carga efectiva na molécula ou ião (CO2, MnO4-, NO3-, NH4+, …).

6 Número de oxidação - gráfico de Langmuir
Exemplo: O cloro pode assumir estados de oxidação de -1 até +7.

7 Células Galvânicas (produção de energia eléctrica)
Se a reacção descrita atrás ocorrer com contacto directo dos reagentes, não há realização de trabalho útil. As reacções de oxidação-redução podem ocorrer com os reagentes separados, ligados por um condutor eléctrico. Célula de Daniell

8 Funcionamento Cátodo: eléctrodo onde ocorre a semi-reacção de redução. Cu2+(aq) + 2 e-  Cu(s) Ponte salina: mantém a electroneutralidade das soluções O facto de os electrões se moverem indica que existe uma diferença de potencial entre os dois eléctrodos: potencial de pilha ou força electromotriz (fem) Ânodo: eléctrodo onde ocorre a semi-reacção de oxidação. Zn(s)  Zn2+(aq) + 2 e-

9 Acerto de equações redox
Separar a equação em duas semi-reacções. Acertar todos os átomos, excepto o O e H, separadamente em cada semi-reacção. Acertar o oxigénio. Para reacções em meio ácido adicionar H2O, e para reacções em meio básico adicionar OH-. Acertar depois o H. Para reacções em meio ácido adicionar H+ e para reacções em meio básico adicionar H2O. Acertar cada semi-equação electricamente, adicionando electrões. Somar as duas semi-reacções, eliminando os electrões da equação final, por multiplicação por coeficientes apropriados.

10 Exemplo - acerto de equação em meio ácido
Acertar a equação para a oxidação do cobre pelo NO3- em meio ácido. O cobre é oxidado a Cu2+ e o NO3- reduzido a NO. Cu  Cu2+ NO3-  NO Cu  Cu e- NO H+ + 3 e-NO + 2 H2O ( x3) Cu  Cu e- ( x2) NO H+ + 3 e-NO + 2 H2O 8 H+ + 2 NO Cu  2 NO + 3 Cu H2O

11 Exemplo - acerto de equação em meio básico
Acertar a equação para a oxidação do Mn2+ pelo peróxido de hidrogénio em meio básico. O Mn2+ é oxidado a MnO2 e o peróxido reduzido a H2O Mn2+  MnO2 H2O2  H2O TRUQUE: por cada OH- em falta adicionar de imediato 2 OH- e uma molécula de H2O do outro lado da equação! Mn OH- MnO2 + 2 H2O + 2 e- H2O2 + H2O + 2 e-  H2O + 2 OH- Mn2+ + H2O2 + 2 OH-  MnO2 + 2 H2O

12 Espontaneidade das reacções
Voltando a tomar como exemplo a Célula de Daniell, podemos levantar duas questões: porque motivo o ião de cobre, Cu2+, tem tendência a reduzir em contacto com o zinco metálico? Se as concentrações dos iões cobre e zinco forem unitárias ( = 1 M), qual o valor da fem da célula?

13 Potencial de redução padrão, Eº
É impossível medir o potencial absoluto de um eléctrodo, mas sim diferenças de potencial. Assim, é necessário um eléctrodo padrão a partir do qual se determina o potencial de todos os outros pares redox. O eléctrodo padrão de hidrogénio (EPH) apresenta, por convenção internacional, um potencial de redução padrão Eº = 0 V, correspondente à reacção reversível: 2 H+(aq, 1M) + 2 e H2(g, 1 atm)

14 Medição dos potenciais de redução padrão
Célula (ou pilha) galvânica que permite a determinação do potencial de redução padrão do par redox Cu2+/Cu, EºCu2+/Cu Eºcélula = Eºcátodo - Eºânodo Eºcélula = EºCu2+/Cu - 0 V EºCu2+/Cu = V cátodo ânodo

15 Tabela de potenciais de redução padrão, a 25 ºC
Condições padrão: espécies dissolvidas, concentração 1M e gases, p = 1 atm Quanto maior o Eº maior a tendência para sofrer redução!

16 Cálculo da força electromotriz de uma pilha
Célula de Daniell: Eºcélula = Eºcátodo - Eºânodo Eºcélula = EºCu2+/Cu - EºZn2+/Zn Eºcélula = 0.34 V - (-0.76 V) = 1.10 V

17 2 Ag+(aq) + Cu(s)  Cu2+(aq) + 2 Ag(s)
Outro exemplo EºAg+/Ag > EºCu2+/Cu, logo no eléctrodo de prata ocorre a redução (cátodo) e no de cobre a oxidação (ânodo) 2 Ag+(aq) + Cu(s)  Cu2+(aq) + 2 Ag(s) Eºcélula = Eºcátodo - Eºânodo Eºcélula = 0.80 V V = 0.46 V

18 Regra da diagonal As reacções da tabela de potenciais de redução padrão são reversíveis. Por exemplo o cobre pode funcionar como cátodo ou como ânodo de uma pilha. REGRA DA DIAGONAL Em condições padrão, qualquer espécie situada à esquerda numa dada reacção reagirá espontaneamente com uma espécie situada á direita e localizada abaixo na tabela.

19 Deslocamento do hidrogénio
2 Na(s) + 2 H2O(l)  2 NaOH(aq) + H2(g)  Cd(s) + H2O(l)   Cd(s) + 2 HCl(aq)  CdCl2(aq) + H2(g)  Cd(s) + 2 H+(aq)  Cd2+(aq) + H2(g) Ag(s) + 2 H+(aq)  

20 Deslocamento de metais
Zn (s) + CuSO4(aq)  ZnSO4(aq) + Cu (s)  Cu(s) + Zn2+(aq)   Cu (s) + 2 Ag+(aq) Cu2+(aq) + Ag(s) 

21 Deslocamento de halogéneos
Cl2(g) + 2 Br-(aq) Cl-(aq) + Br2(l) Cl2 (aq) + 2 NaI 2 NaCl (aq) + I2 (s)

22 Energia eléctrica Numa célula galvânica a energia química é convertida em energia eléctrica. Energia eléctrica = fem  carga total que atravessa o circuito energia eléctrica = volts  coulombs = joules Carga total = nF, em que n é o número de moles de electrões e F é a constante de Faraday 1 F  C/mol de e- weléctrico = - nFEcélula

23 Constante de equilíbrio
Em condições padrão: weléctrico = - nFEºcélula Para um processo espontâneo, Eºcélula > 0 K Eºcélula Reacção > 1 Positiva Espontanea =1 0 Em equilíbrio < 1 Negativa Não espontânea -nFEºcélula = - RT ln K A 25 ºC

24 Equação de Nernst Muitas reacções ocorrem fora das condições padrão!
-nFE = -nFEº + RT ln Q em que Q é o quociente reaccional

25 Exemplo(s) de cálculo 1.Qual a equação de Nernst para a reacção que ocorre na pilha de Daniell? 2. Prever se a reacção Cd(s) + Fe2+(aq)  Cd2+(aq) + Fe(s) ocorre espontaneamente a 25 ºC quando [Fe2+]=0.6 M e [Cd2+] = 0.01 M. Como E > 0, a reacção é espontânea

26 2 H+(aq) + Cd(s)  Cd2+(aq) + H2(g)
Envolvendo gases Se existirem gases envolvidos na reacção as concentrações devem ser expressas em atmosferas. Qual é a fem de uma célula constituída pela semi-célula Cd/Cd2+ e pela semi-célula Pt/H2/H+ se [Cd2+] = 0.2 M, [H+] = 0.16 M e PH2 = 0.8 atm? 2 H+(aq) + Cd(s)  Cd2+(aq) + H2(g)

27 Baterias Uma bateria é uma célula galvânica, ou um conjunto de células galvânicas ligadas em série, que fornece corrente contínua a voltagem constante.

28 Pilha seca de Leclanché
Utilizada em lanternas, rádios portáteis, brinquedos, etc... Ânodo: Zn(s)  Zn2+(aq) + 2 e- Cátodo: 2 NH4+(aq) + MnO2(s) + 2 e-  Mn2O3(s) + 2 NH3(aq) + H2O(l) Epilha  1.5 V

29 Bateria de mercúrio Utilizada em medicina (pacemakers), indústria electrónica, etc... Ânodo: Zn(Hg) + 2 OH-(aq)  ZnO(s) +H2O(l) + 2 e- Cátodo: HgO(s) + H2O(l) + 2e-  Hg(l) + 2 OH-(aq) Global: Zn(Hg) + HgO(s)  ZnO(s) + Hg(l) Epilha  1.35 V

30 Acumuladores de Chumbo (bateria auto)
Eºcélula = EºPbO2/PbSO4 - EºPbSO4/Pb Eºcélula = (-0.28)  2 V Ebateria = 6  2 V  12 V Ânodo: Pb(s) + SO42-(aq)  PbSO4(s) + 2 e- Cátodo: PbO2(s) + 4 H+(aq) + SO42-(aq) + 2e-  PbSO4(s) + 2 H2O(l) Global: Pb(s) + PbO2(s) + 4 H+(aq) + 2 SO42-(aq) PbSO4(s) + 2 H2O(l) descarga carga

31 Pilha de Ni-Cd (recarregáveis)

32 Bateria de estado sólido de lítio
Utilizam um sólido em contacto com os eléctrodos. O sólido é um material polimérico que permite a passagem dos iões Li+, mas não dos electrões. Ecélula  3 V Ânodo: Li  Li+ + e- Cátodo: TiS2 + e-  TiS2-

33 Células de Combustível
Uma célula (ou pilha) de combustível é uma célula galvânica que necessita de um fornecimento contínuo de reagentes para funcionar. Ânodo: H2(g)  2 H+ + 2 e- Cátodo: O2(g) + 4 H+ + 4 e-  2 H2O Global: 2 H2(g) + O2(g)  2 H2O(l) Eºcélula = Eºcátodo - Eºânodo Eºcélula = 1.23 V - 0 Eºcélula = 1.23 V

34 Aplicações “Fuel Cell” utilizada pelas naves Apollo para fornecer energia e água aos astronautas Veículo de transporte público movido por células de hidrogénio


Carregar ppt "Unidade Departamental de Engenharia - Secção de Química"

Apresentações semelhantes


Anúncios Google