A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

MECÂNICA DOS FLUIDOS Fluido Força do fluido Pressão Lei de Stevin

Apresentações semelhantes


Apresentação em tema: "MECÂNICA DOS FLUIDOS Fluido Força do fluido Pressão Lei de Stevin"— Transcrição da apresentação:

1 MECÂNICA DOS FLUIDOS Fluido Força do fluido Pressão Lei de Stevin
Sistemas de vasos comunicantes Princípio de Pascal Medições de pressão Princípio de Arquimedes Número de Reynolds Força de atrito em fluidos Equação da continuidade Equação de Bernoulli

2 MECÂNICA DOS FLUIDOS O QUE É UM FLUIDO ?
É UMA SUBSTÂNCIA QUE PODE FLUIR (OU ESCOAR) Os líquido e os gases são fluidos A sua forma depende do recipiente 2

3 NÃO SUPORTAM DEFORMAÇÕES DE CISALHAMENTO:
Força de cisalhamento  paralela à superfície Os fluidos não viscosos não sustentam estas forças  não se consegue torcer um fluido porque as forças interactómicas não são fortes o suficiente para manter o átomos no lugar. 3

4 OS FLUIDOS EXERCEM FORÇAS PERPENDICULARES
ÀS SUPERFÍCIES QUE OS SUPORTAM É o único tipo de força que pode existir num fluido gás A força do fluido sobre um corpo submerso em qualquer ponto é perpendicular a superfície do corpo A força do fluido sobre as paredes do recipiente é perpendicular à parede em todos os pontos 4

5 Para materiais homogéneos
DENSIDADE Para materiais homogéneos PRESSÃO Quando a força se distribui uniformemente em A 5

6 Pressão atmosférica sobre a superfície da Terra
A atmosfera exerce pressão sobre a superfície da terra e sobre todos os corpos que se encontram na superfície Pressão atmosférica sobre a superfície da Terra Esta pressão é responsável pela acção das ventosas, palhinhas, aspirador de pó … 6

7 Fluido em repouso 1- HIDROSTÁTICA
Seleccionamos uma amostra do fluido  um cilindro imaginário com uma área de secção transversal A Como a amostra está em equilíbrio, a força resultante na vertical é nula  Lei fundamental da hidrostática Lei de Stevin 7

8 A pressão no interior de um fluido aumenta com a profundidade
 a diferença de pressão entre dois pontos dum líquido em equilíbrio hidrostático é proporcional ao desnível entre esses pontos 8

9 A pressão no interior de um fluido aumenta com a profundidade
9

10 SISTEMAS DE VASOS COMUNICANTES
10

11 Aplicação: prensa hidráulica
PRINCÍPIO DE PASCAL Uma alteração de pressão aplicada a um fluido num recipiente fechado é transmitida integralmente a todos os pontos do fluido bem como às paredes do recipiente que o suportam Aplicação: prensa hidráulica Uma pequena força do lado esquerdo produz uma força muito maior no lado direito Como a variação da pressão é a mesma nos dois êmbolos  11

12 Mede a pressão atmosférica
MEDIÇÕES DE PRESSÃO 1 - O BARÓMETRO DE MERCÚRIO (TORRICELLI) Mede a pressão atmosférica Um tubo longo e fechado numa extremidade cheio de mercúrio é invertido num recipiente cheio de mercúrio logo a pressão atmosférica é 12

13 2 - MANÓMETRO DE TUBO ABERTO
Mede a pressão de um gás contido num recipiente Tanque Manómetro p0 pg h Uma extremidade de um tubo em U que contém um fluido está aberta para a atmosfera e a outra extremidade está ligada à um sistema de pressão desconhecida  é a pressão absoluta e  é a pressão manométrica 13

14 PRINCÍPIO DE ARQUIMEDES Consideramos um cubo de fluido:
“Todo o corpo completa ou parcialmente imerso num fluido experimenta uma força de impulsão para cima, cujo valor é igual ao peso do fluido deslocado” Consideramos um cubo de fluido: Como o cubo está em equilíbrio, a força resultante vertical é nula: onde m é a massa do fluido dentro do cubo 14

15 ORIGEM DA FORÇA DE IMPULSÃO
Vimos anteriormente que a pressão p2 é maior que a pressão p1  F2>F1. Somando essas duas forças, vemos que existe uma força resultante que tem a direção vertical e o sentido para cima. Essa força resultante é a força de impulsão,

16 Substituindo o cubo de fluido por outros materiais
Caso I. Um corpo totalmente submerso  um corpo mais denso do que o fluido afunda Pedra  Um corpo menos denso do que o fluido experimenta uma força para cima Madeira

17 Substituindo em (1) obtemos
Caso II. Um corpo flutuando O corpo está em equilíbrio  a força de impulsão é equilibrada pela força gravitacional do corpo Iceberg  V é a parte do volume do corpo que está submerso  é o volume total do corpo Substituindo em (1) obtemos A fracção do volume do corpo imerso no fluido = à razão entre a densidade do corpo e a densidade do fluido 17

18 BALÕES DE AR QUENTE Como o ar quente é menos denso que o a frio  uma força resultante para cima actua nos balões 18

19 Quando um fluido está em movimento seu fluxo ou escoamento pode ser:
2- HIDRODINÁMICA CARACTERÍSTICAS DO ESCOAMENTO Quando um fluido está em movimento seu fluxo ou escoamento pode ser: laminar Constante ou laminar  se cada partícula do fluido seguir uma trajectória suave, sem cruzar com as trajectórias das outras partículas. Turbulento  acima de uma determinada velocidade crítica o fluxo torna-se turbulento turbulento É um escoamento irregular, caracterizado por regiões de pequenos redemoinhos O regime de escoamento, é determinado pela seguinte quantidade adimensional, (obtida experimentalmente) chamada número de Reynolds laminar se NR < 2 000 turbulento se NR > 3 000 Instável  muda de um regime para outro, se < NR < 3 000 19

20 FORÇA DE ATRITO EM FLUIDOS (OU FORÇA DE ARRASTE)
A força de arraste num fluido, ao contrário do que acontece com a força de atrito que tratamos anteriormente na mecânica, é uma força dependente da velocidade A força de arraste num fluido apresenta dois regimes: PARA PEQUENAS VELOCIDADES onde b é o coeficiente da força de atrito e é a velocidade do corpo b depende da massa e da forma do objecto A força resultante que actua sobre um corpo que cai perto da superfície terrestre, considerando o atrito com o ar é Por causa da aceleração da gravidade, a velocidade aumenta. A velocidade para a qual a força total é nula chama-se velocidade limite O movimento torna-se rectilíneo e uniforme (velocidade constante)

21 C: coeficiente de arraste (adimensional)
Fluxo turbulento PARA VELOCIDADES ALTAS C: coeficiente de arraste (adimensional) A: área da seção transversal do corpo : densidade do meio Desenho de Leonardo da Vinci, de 1483: Salto realizado por Adrian Nicholas, 26/6/2000

22 Exemplo 1:

23 Velocidade limite de uma gota de chuva
Exemplo 2: Gota de chuva GOTA DE CHUVA Quando andamos sob a chuva, as gotas que caem não nos magoam. Isso ocorre porque as gotas de água não estão em queda livre, mas sujeitas a um movimento no qual a resistência do ar tem que ser considerada Velocidade limite de uma gota de chuva Com a resistência do ar: Sem a resistência do ar:

24 Adoptamos um modelo de simplificação baseado nas seguintes suposições
Muitos das características dos fluidos reais em movimento podem ser compreendidas considerando-se o comportamento dum fluido ideal Adoptamos um modelo de simplificação baseado nas seguintes suposições 1. Fluido não viscoso  não apresentam qualquer resistência ao seu movimento 2. Fluido incompressível  a densidade, ρ, tem um valor constante 3. Escoamento laminar  a velocidade do fluido em cada ponto não varia com o tempo 4. Escoamento irrotacional  Qualquer ponto no interior do fluido não roda sobre si mesmo (não tem momento angular) Os pressupostos 1 e 2 são propriedades do nosso fluido ideal Os pressupostos 3 e 4 são descrições da maneira como o fluido escoa 24

25 A velocidade da partícula é sempre tangente à linha de corrente
A trajectória percorrida por uma partícula de fluido num escoamento laminar é chamada linha de corrente Corrente Elemento do fluido A velocidade da partícula é sempre tangente à linha de corrente

26 Fluxo é definido como o produto da velocidade do fluido pela secção recta que o fluido atravessa
 caudal volúmico (ou vazão)

27 EQUAÇÃO DA CONTINUIDADE Equação da continuidade:
(a) Tempo t (b) Tempo t + Δt

28 Do teorema trabalho-energia
EQUAÇÃO DE BERNOULLI Do teorema trabalho-energia O trabalho realizado por todas as forças do sistema é igual à variação de energia cinética, Sabendo que O trabalho realizado ao aplicarmos uma força F sobre a área A, para forçar um fluido a deslocar-se x no cilindro

29 Trabalho da força gravitacional
Variação da energia cinética

30 Equação fundamental da hidrodinâmica  equação de Bernoulli

31 A força que sustenta os aviões
Aplicação: A força que sustenta os aviões A asa de um avião é mais curva na parte de cima. Isto faz com que o ar passe mais rápido na parte de cima do que na de baixo da asa. De acordo com a equação de Bernoulli, a pressão do ar em cima da asa será menor do que na parte de baixo, criando uma força que sustenta o avião no ar

32  Força de sustentação


Carregar ppt "MECÂNICA DOS FLUIDOS Fluido Força do fluido Pressão Lei de Stevin"

Apresentações semelhantes


Anúncios Google